Математические задачи прикладного портфельного анализа
Проводится исследование математических моделей прикладного портфельного анализа, способов идентификации их параметров и численных методов обоснования оптимальных решений. В настоящее время комплекс математических методов портфельного анализа в финансовой сфере принципиально различен в двух случаях....
| الحاوية / القاعدة: | Известия Алтайского государственного университета |
|---|---|
| المؤلفون الرئيسيون: | , , |
| التنسيق: | مقال |
| اللغة: | الإنجليزية |
| منشور في: |
Altai State University
2019-03-01
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | http://izvestiya.asu.ru/article/view/5316 |
| الملخص: | Проводится исследование математических моделей прикладного портфельного анализа, способов идентификации их параметров и численных методов обоснования оптимальных решений. В настоящее время комплекс математических методов портфельного анализа в финансовой сфере принципиально различен в двух случаях. Первый связан с выбором активов, доходность которых стабильна, но существует ненулевая вероятность их потери. Тогда цель портфельного анализа состоит в определении оптимального набора активов, при котором риски потерь являются минимальными. Второй подход, для которого применима теория Марковица, состоит в выборе совокупности компенсационных активов. Считается, что доходность активов является случайной величиной, но вероятности их полных потерь нулевые. Тогда цель портфельного анализа состоит в выборе совокупности активов, которая обеспечит высокую среднюю доходность и минимальное отклонение уровня дохода от этой величины. Предлагается комплекс математических методов поддержки принятия решений для теории Марковица, основанный на идее формирования таблицы вариантов оптимальных портфелей и использовании принципов ожидаемой полезности, в том числе субъективной, для выбора портфеля, который соответствует инвестиционным предпочтениям лиц, принимающих решения. |
|---|---|
| تدمد: | 1561-9443 1561-9451 |
