Lower semicontinuity of nonlocal $L^\infty $ energies on $SBV_0(I)$
We characterize the lower-semicontinuity of nonlocal one-dimensional energies of the type \[ \operatorname{ess\;sup}_{(s,t) \in I\times I} h\bigl ([u](s), [u](t)\bigr ), \] where $I$ is an open and bounded interval in the real line, $u \in \mathit{SBV_{\mathrm{0}}}(I)$ and $[u](r):=u(r^+)- u(r^-)$,...
| الحاوية / القاعدة: | Comptes Rendus. Mathématique |
|---|---|
| المؤلفون الرئيسيون: | , , |
| التنسيق: | مقال |
| اللغة: | الإنجليزية |
| منشور في: |
Académie des sciences
2025-05-01
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.726/ |
| الملخص: | We characterize the lower-semicontinuity of nonlocal one-dimensional energies of the type
\[ \operatorname{ess\;sup}_{(s,t) \in I\times I} h\bigl ([u](s), [u](t)\bigr ), \]
where $I$ is an open and bounded interval in the real line, $u \in \mathit{SBV_{\mathrm{0}}}(I)$ and $[u](r):=u(r^+)- u(r^-)$, with $r\in I$. |
|---|---|
| تدمد: | 1778-3569 |
