SDePER: a hybrid machine learning and regression method for cell-type deconvolution of spatial barcoding-based transcriptomic data

Abstract Spatial barcoding-based transcriptomic (ST) data require deconvolution for cellular-level downstream analysis. Here we present SDePER, a hybrid machine learning and regression method to deconvolve ST data using reference single-cell RNA sequencing (scRNA-seq) data. SDePER tackles platform e...

Full description

Bibliographic Details
Published in:Genome Biology
Main Authors: Yunqing Liu, Ningshan Li, Ji Qi, Gang Xu, Jiayi Zhao, Nating Wang, Xiayuan Huang, Wenhao Jiang, Huanhuan Wei, Aurélien Justet, Taylor S. Adams, Robert Homer, Amei Amei, Ivan O. Rosas, Naftali Kaminski, Zuoheng Wang, Xiting Yan
Format: Article
Language:English
Published: BMC 2024-10-01
Online Access:https://doi.org/10.1186/s13059-024-03416-2
Description
Summary:Abstract Spatial barcoding-based transcriptomic (ST) data require deconvolution for cellular-level downstream analysis. Here we present SDePER, a hybrid machine learning and regression method to deconvolve ST data using reference single-cell RNA sequencing (scRNA-seq) data. SDePER tackles platform effects between ST and scRNA-seq data, ensuring a linear relationship between them while addressing sparsity and spatial correlations in cell types across capture spots. SDePER estimates cell-type proportions, enabling enhanced resolution tissue mapping by imputing cell-type compositions and gene expressions at unmeasured locations. Applications to simulated data and four real datasets showed SDePER’s superior accuracy and robustness over existing methods.
ISSN:1474-760X