BPDM-GCN: Backup Path Design Method Based on Graph Convolutional Neural Network

To address the problems of poor applicability of existing fault link recovery algorithms in network topology migration and backup path congestion, this paper proposes a backup path algorithm based on graph convolutional neural to improve deep deterministic policy gradient. First, the BPDM-GCN backup...

Full description

Bibliographic Details
Published in:Future Internet
Main Authors: Wanwei Huang, Huicong Yu, Yingying Li, Xi He, Rui Chen
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Subjects:
Online Access:https://www.mdpi.com/1999-5903/17/5/194
Description
Summary:To address the problems of poor applicability of existing fault link recovery algorithms in network topology migration and backup path congestion, this paper proposes a backup path algorithm based on graph convolutional neural to improve deep deterministic policy gradient. First, the BPDM-GCN backup path algorithm is constructed within a deep deterministic policy gradient training framework. It uses graph convolutional networks to detect changes in network topology, aiming to optimize data transmission delay and bandwidth occupancy within the network topology. After iterative training of the BPDM-GCN algorithm, the comprehensive link weights within the network topology are generated. Then, according to the comprehensive link weight and taking the shortest path as the optimization objective, a backup path implementation method based on the incremental shortest path tree is designed to reduce the phasor data transmission delay in the backup path. In conclusion, the experimental results show that the backup path formulated by this algorithm exhibits reduced data transmission delay, minimal path extension, and a high success rate in recovering failed links. Compared to the superior NRLF-RL algorithm, the BPDM-GCN algorithm achieves a reduction of approximately 14.29% in the average failure link recovery delay and an increase of approximately 5.24% in the failure link recovery success rate.
ISSN:1999-5903