Functional Connectivity and Feature Fusion Enhance Multiclass Motor-Imagery Brain–Computer Interface Performance

(1) Background: in the field of motor-imagery brain–computer interfaces (MI-BCIs), obtaining discriminative features among multiple MI tasks poses a significant challenge. Typically, features are extracted from single electroencephalography (EEG) channels, neglecting their interconnections, which le...

詳細記述

書誌詳細
出版年:Sensors
主要な著者: Ilaria Siviero, Gloria Menegaz, Silvia Francesca Storti
フォーマット: 論文
言語:英語
出版事項: MDPI AG 2023-08-01
主題:
オンライン・アクセス:https://www.mdpi.com/1424-8220/23/17/7520