| Summary: | This study focuses on investigating the phase transitions in two materials, Cu<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>ZnSnS<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> (CZTS) and Cu<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>ZnGeS<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> (CZGS), which are important for understanding their structural and functional properties. The temperature and pressure-induced tetragonal-orthorhombic phase transitions in these materials are analyzed using density functional theory (DFT) and the quasi-harmonic Debye model. The research aims to examine the changes in the material’s structure and the associated thermodynamic properties during these phase transitions. The results reveal that both compounds exhibit a negative value of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>H<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>m</mi><mi>i</mi><mi>x</mi></mrow></msub></semantics></math></inline-formula>, indicating the release of energy during the mixing process, which suggests an exothermic nature. The DFT calculations at zero temperature and pressure demonstrate that the stannite structure represents the ground state configuration of the Cu<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>ZnSnS<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> system (with x<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mi>G</mi><mi>e</mi></mrow></msub></semantics></math></inline-formula> = 0%), compared to the wurtzite-stannite structure. The calculations also show that the difference in enthalpies of formation (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>δ</mi></semantics></math></inline-formula>H) between the stannite and wurtzite-stannite phases for CZTS is estimated to be 8.884 meV per atom. Regarding Cu<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>ZnGeS<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula>, the wurtzite-stannite structure is found to be the most stable, closely followed by the stannite structure, with enthalpies of formation of −4.833 eV·atom<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> and −4.804 eV·atom<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula>, respectively. Notably, there are no definitive reports on enthalpy studies for the Cu<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula>ZnGeS<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>4</mn></msub></semantics></math></inline-formula> system in the existing literature. Understanding the behavior of these materials under different conditions can contribute to the development of improved performance and stability of devices based on CZTS and CZGS.
|