A primary battery for efficient cadmium contamination remediation and electricity generation

In this work, two kinds of primary batteries, both of which included a Zn anode, C rod cathode, copper wire and electrolyte composed of Cd2+-contaminated water or soil, were constructed in the first attempt to both remove Cd2+ and generate electricity. Unlike traditional technologies such as electro...

Full description

Bibliographic Details
Published in:Fundamental Research
Main Authors: Chaowen Chen, Jia Zhang, Guilong Zhang, Dongfang Wang, Jun Wang, Dongqing Cai, Zhengyan Wu
Format: Article
Language:English
Published: KeAi Communications Co. Ltd. 2024-07-01
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S266732582300078X
Description
Summary:In this work, two kinds of primary batteries, both of which included a Zn anode, C rod cathode, copper wire and electrolyte composed of Cd2+-contaminated water or soil, were constructed in the first attempt to both remove Cd2+ and generate electricity. Unlike traditional technologies such as electrokinetic remediation with high energy consumption, this technology could realize Cd2+ migration to aggregation and solidification and generate energy at the same time through simultaneous galvanic reactions. The passive surface of Zn and C was proven via electrochemical measurements to be porous to maintain the relatively active galvanic reactions for continuous Cd2+ precipitation. Cd2+ RE (removal efficiency) and electricity generation were investigated under different conditions, based on which two empirical models were established to predict them successfully. In soil, KCl was added to desorb Cd2+ from soil colloids to promote Cd2+ removal. These systems were also proven to remove Cd2+ efficiently when their effects on plants, zebrafish, and the soil bacterial community were tested. LEDs could be lit for days by utilizing the electricity produced herein. This work provides a novel, green, and low-cost route to remediate Cd2+ contamination and generate electricity simultaneously, which is of extensive practical significance in the environmental and energy fields.
ISSN:2667-3258