Post-hoc Labeling of Arbitrary M/EEG Recordings for Data-Efficient Evaluation of Neural Decoding Methods

Many cognitive, sensory and motor processes have correlates in oscillatory neural source activity, which is embedded as a subspace in the recorded brain signals. Decoding such processes from noisy magnetoencephalogram/electroencephalogram (M/EEG) signals usually requires data-driven analysis methods...

Full description

Bibliographic Details
Published in:Frontiers in Neuroinformatics
Main Authors: Sebastián Castaño-Candamil, Andreas Meinel, Michael Tangermann
Format: Article
Language:English
Published: Frontiers Media S.A. 2019-08-01
Subjects:
Online Access:https://www.frontiersin.org/article/10.3389/fninf.2019.00055/full
_version_ 1852802178638413824
author Sebastián Castaño-Candamil
Andreas Meinel
Michael Tangermann
Michael Tangermann
author_facet Sebastián Castaño-Candamil
Andreas Meinel
Michael Tangermann
Michael Tangermann
author_sort Sebastián Castaño-Candamil
collection DOAJ
container_title Frontiers in Neuroinformatics
description Many cognitive, sensory and motor processes have correlates in oscillatory neural source activity, which is embedded as a subspace in the recorded brain signals. Decoding such processes from noisy magnetoencephalogram/electroencephalogram (M/EEG) signals usually requires data-driven analysis methods. The objective evaluation of such decoding algorithms on experimental raw signals, however, is a challenge: the amount of available M/EEG data typically is limited, labels can be unreliable, and raw signals often are contaminated with artifacts. To overcome some of these problems, simulation frameworks have been introduced which support the development of data-driven decoding algorithms and their benchmarking. For generating artificial brain signals, however, most of the existing frameworks make strong and partially unrealistic assumptions about brain activity. This limits the generalization of results observed in the simulation to real-world scenarios. In the present contribution, we show how to overcome several shortcomings of existing simulation frameworks. We propose a versatile alternative, which allows for an objective evaluation and benchmarking of novel decoding algorithms using real neural signals. It allows to generate comparatively large datasets with labels being deterministically recoverable from the arbitrary M/EEG recordings. A novel idea to generate these labels is central to this framework: we determine a subspace of the true M/EEG recordings and utilize it to derive novel labels. These labels contain realistic information about the oscillatory activity of some underlying neural sources. For two categories of subspace-defining methods, we showcase how such labels can be obtained—either by an exclusively data-driven approach (independent component analysis—ICA), or by a method exploiting additional anatomical constraints (minimum norm estimates—MNE). We term our framework post-hoc labeling of M/EEG recordings. To support the adoption of the framework by practitioners, we have exemplified its use by benchmarking three standard decoding methods—i.e., common spatial patterns (CSP), source power-comodulation (SPoC), and convolutional neural networks (ConvNets)—wrt. Varied dataset sizes, label noise, and label variability. Source code and data are made available to the reader for facilitating the application of our post-hoc labeling framework.
format Article
id doaj-art-bb4a8e3ad5fb4b5ebeaee904febcf705
institution Directory of Open Access Journals
issn 1662-5196
language English
publishDate 2019-08-01
publisher Frontiers Media S.A.
record_format Article
spelling doaj-art-bb4a8e3ad5fb4b5ebeaee904febcf7052025-08-19T20:39:35ZengFrontiers Media S.A.Frontiers in Neuroinformatics1662-51962019-08-011310.3389/fninf.2019.00055457397Post-hoc Labeling of Arbitrary M/EEG Recordings for Data-Efficient Evaluation of Neural Decoding MethodsSebastián Castaño-Candamil0Andreas Meinel1Michael Tangermann2Michael Tangermann3Brain State Decoding Lab, Department of Computer Science and BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, GermanyBrain State Decoding Lab, Department of Computer Science and BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, GermanyBrain State Decoding Lab, Department of Computer Science and BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Freiburg, GermanyAutonomous Intelligent Systems, Department of Computer Science, University of Freiburg, Freiburg, GermanyMany cognitive, sensory and motor processes have correlates in oscillatory neural source activity, which is embedded as a subspace in the recorded brain signals. Decoding such processes from noisy magnetoencephalogram/electroencephalogram (M/EEG) signals usually requires data-driven analysis methods. The objective evaluation of such decoding algorithms on experimental raw signals, however, is a challenge: the amount of available M/EEG data typically is limited, labels can be unreliable, and raw signals often are contaminated with artifacts. To overcome some of these problems, simulation frameworks have been introduced which support the development of data-driven decoding algorithms and their benchmarking. For generating artificial brain signals, however, most of the existing frameworks make strong and partially unrealistic assumptions about brain activity. This limits the generalization of results observed in the simulation to real-world scenarios. In the present contribution, we show how to overcome several shortcomings of existing simulation frameworks. We propose a versatile alternative, which allows for an objective evaluation and benchmarking of novel decoding algorithms using real neural signals. It allows to generate comparatively large datasets with labels being deterministically recoverable from the arbitrary M/EEG recordings. A novel idea to generate these labels is central to this framework: we determine a subspace of the true M/EEG recordings and utilize it to derive novel labels. These labels contain realistic information about the oscillatory activity of some underlying neural sources. For two categories of subspace-defining methods, we showcase how such labels can be obtained—either by an exclusively data-driven approach (independent component analysis—ICA), or by a method exploiting additional anatomical constraints (minimum norm estimates—MNE). We term our framework post-hoc labeling of M/EEG recordings. To support the adoption of the framework by practitioners, we have exemplified its use by benchmarking three standard decoding methods—i.e., common spatial patterns (CSP), source power-comodulation (SPoC), and convolutional neural networks (ConvNets)—wrt. Varied dataset sizes, label noise, and label variability. Source code and data are made available to the reader for facilitating the application of our post-hoc labeling framework.https://www.frontiersin.org/article/10.3389/fninf.2019.00055/fullneural decodingM/EEG labelingdata-driven neural decodingbrain computer interfacesband-power decoding
spellingShingle Sebastián Castaño-Candamil
Andreas Meinel
Michael Tangermann
Michael Tangermann
Post-hoc Labeling of Arbitrary M/EEG Recordings for Data-Efficient Evaluation of Neural Decoding Methods
neural decoding
M/EEG labeling
data-driven neural decoding
brain computer interfaces
band-power decoding
title Post-hoc Labeling of Arbitrary M/EEG Recordings for Data-Efficient Evaluation of Neural Decoding Methods
title_full Post-hoc Labeling of Arbitrary M/EEG Recordings for Data-Efficient Evaluation of Neural Decoding Methods
title_fullStr Post-hoc Labeling of Arbitrary M/EEG Recordings for Data-Efficient Evaluation of Neural Decoding Methods
title_full_unstemmed Post-hoc Labeling of Arbitrary M/EEG Recordings for Data-Efficient Evaluation of Neural Decoding Methods
title_short Post-hoc Labeling of Arbitrary M/EEG Recordings for Data-Efficient Evaluation of Neural Decoding Methods
title_sort post hoc labeling of arbitrary m eeg recordings for data efficient evaluation of neural decoding methods
topic neural decoding
M/EEG labeling
data-driven neural decoding
brain computer interfaces
band-power decoding
url https://www.frontiersin.org/article/10.3389/fninf.2019.00055/full
work_keys_str_mv AT sebastiancastanocandamil posthoclabelingofarbitrarymeegrecordingsfordataefficientevaluationofneuraldecodingmethods
AT andreasmeinel posthoclabelingofarbitrarymeegrecordingsfordataefficientevaluationofneuraldecodingmethods
AT michaeltangermann posthoclabelingofarbitrarymeegrecordingsfordataefficientevaluationofneuraldecodingmethods
AT michaeltangermann posthoclabelingofarbitrarymeegrecordingsfordataefficientevaluationofneuraldecodingmethods