Yetter–Drinfeld Modules for Group-Cograded Hopf Quasigroups

Let <i>H</i> be a crossed group-cograded Hopf quasigroup. We first introduce the notion of <i>p</i>-Yetter–Drinfeld quasimodule over <i>H</i>. If the antipode of <i>H</i> is bijective, we show that the category <inline-formula><math xmlns=&quo...

全面介紹

書目詳細資料
發表在:Mathematics
Main Authors: Huili Liu, Tao Yang, Lingli Zhu
格式: Article
語言:英语
出版: MDPI AG 2022-04-01
主題:
在線閱讀:https://www.mdpi.com/2227-7390/10/9/1388
實物特徵
總結:Let <i>H</i> be a crossed group-cograded Hopf quasigroup. We first introduce the notion of <i>p</i>-Yetter–Drinfeld quasimodule over <i>H</i>. If the antipode of <i>H</i> is bijective, we show that the category <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Y</mi><mi>D</mi><mi>Q</mi><mo>(</mo><mi>H</mi><mo>)</mo></mrow></semantics></math></inline-formula> of Yetter–Drinfeld quasimodules over <i>H</i> is a crossed category, and the subcategory <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Y</mi><mi>D</mi><mo>(</mo><mi>H</mi><mo>)</mo></mrow></semantics></math></inline-formula> of Yetter–Drinfeld modules is a braided crossed category.
ISSN:2227-7390