Adaptive gait responses to varying weight‐bearing conditions: Inferences from gait dynamics and H‐reflex magnitude
Abstract This study investigates the effects of varying loading conditions on excitability in neural pathways and gait dynamics. We focussed on evaluating the magnitude of the Hoffman reflex (H‐reflex), a neurophysiological measure representing the capability to activate motor neurons and the timing...
| Published in: | Experimental Physiology |
|---|---|
| Main Authors: | , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2024-05-01
|
| Subjects: | |
| Online Access: | https://doi.org/10.1113/EP091492 |
| _version_ | 1850342686659182592 |
|---|---|
| author | Yong Kuk Kim Michelle Gwerder William R. Taylor Heiner Baur Navrag B. Singh |
| author_facet | Yong Kuk Kim Michelle Gwerder William R. Taylor Heiner Baur Navrag B. Singh |
| author_sort | Yong Kuk Kim |
| collection | DOAJ |
| container_title | Experimental Physiology |
| description | Abstract This study investigates the effects of varying loading conditions on excitability in neural pathways and gait dynamics. We focussed on evaluating the magnitude of the Hoffman reflex (H‐reflex), a neurophysiological measure representing the capability to activate motor neurons and the timing and placement of the foot during walking. We hypothesized that weight manipulation would alter H‐reflex magnitude, footfall and lower body kinematics. Twenty healthy participants were recruited and subjected to various weight‐loading conditions. The H‐reflex, evoked by stimulating the tibial nerve, was assessed from the dominant leg during walking. Gait was evaluated under five conditions: body weight, 20% and 40% additional body weight, and 20% and 40% reduced body weight (via a harness). Participants walked barefoot on a treadmill under each condition, and the timing of electrical stimulation was set during the stance phase shortly after the heel strike. Results show that different weight‐loading conditions significantly impact the timing and placement of the foot and gait stability. Weight reduction led to a 25% decrease in double limb support time and an 11% narrowing of step width, while weight addition resulted in an increase of 9% in step width compared to body weight condition. Furthermore, swing time variability was higher for both the extreme weight conditions, while the H‐reflex reduced to about 45% between the extreme conditions. Finally, the H‐reflex showed significant main effects on variability of both stance and swing phases, indicating that muscle‐motor excitability might serve as feedback for enhanced regulation of gait dynamics under challenging conditions. |
| format | Article |
| id | doaj-art-c87eacccff5342dbb3ea0445bdcd4cbf |
| institution | Directory of Open Access Journals |
| issn | 0958-0670 1469-445X |
| language | English |
| publishDate | 2024-05-01 |
| publisher | Wiley |
| record_format | Article |
| spelling | doaj-art-c87eacccff5342dbb3ea0445bdcd4cbf2025-08-19T23:13:32ZengWileyExperimental Physiology0958-06701469-445X2024-05-01109575476510.1113/EP091492Adaptive gait responses to varying weight‐bearing conditions: Inferences from gait dynamics and H‐reflex magnitudeYong Kuk Kim0Michelle Gwerder1William R. Taylor2Heiner Baur3Navrag B. Singh4Laboratory for Movement Biomechanics, Institute for Biomechanics, Department of Health Sciences and Technology ETH Zurich Zurich SwitzerlandLaboratory for Movement Biomechanics, Institute for Biomechanics, Department of Health Sciences and Technology ETH Zurich Zurich SwitzerlandLaboratory for Movement Biomechanics, Institute for Biomechanics, Department of Health Sciences and Technology ETH Zurich Zurich SwitzerlandSchool of Health Professions, Physiotherapy University of Applied Sciences Bern SwitzerlandLaboratory for Movement Biomechanics, Institute for Biomechanics, Department of Health Sciences and Technology ETH Zurich Zurich SwitzerlandAbstract This study investigates the effects of varying loading conditions on excitability in neural pathways and gait dynamics. We focussed on evaluating the magnitude of the Hoffman reflex (H‐reflex), a neurophysiological measure representing the capability to activate motor neurons and the timing and placement of the foot during walking. We hypothesized that weight manipulation would alter H‐reflex magnitude, footfall and lower body kinematics. Twenty healthy participants were recruited and subjected to various weight‐loading conditions. The H‐reflex, evoked by stimulating the tibial nerve, was assessed from the dominant leg during walking. Gait was evaluated under five conditions: body weight, 20% and 40% additional body weight, and 20% and 40% reduced body weight (via a harness). Participants walked barefoot on a treadmill under each condition, and the timing of electrical stimulation was set during the stance phase shortly after the heel strike. Results show that different weight‐loading conditions significantly impact the timing and placement of the foot and gait stability. Weight reduction led to a 25% decrease in double limb support time and an 11% narrowing of step width, while weight addition resulted in an increase of 9% in step width compared to body weight condition. Furthermore, swing time variability was higher for both the extreme weight conditions, while the H‐reflex reduced to about 45% between the extreme conditions. Finally, the H‐reflex showed significant main effects on variability of both stance and swing phases, indicating that muscle‐motor excitability might serve as feedback for enhanced regulation of gait dynamics under challenging conditions.https://doi.org/10.1113/EP091492balanceH‐reflexloading conditionsspinal reflexwalking |
| spellingShingle | Yong Kuk Kim Michelle Gwerder William R. Taylor Heiner Baur Navrag B. Singh Adaptive gait responses to varying weight‐bearing conditions: Inferences from gait dynamics and H‐reflex magnitude balance H‐reflex loading conditions spinal reflex walking |
| title | Adaptive gait responses to varying weight‐bearing conditions: Inferences from gait dynamics and H‐reflex magnitude |
| title_full | Adaptive gait responses to varying weight‐bearing conditions: Inferences from gait dynamics and H‐reflex magnitude |
| title_fullStr | Adaptive gait responses to varying weight‐bearing conditions: Inferences from gait dynamics and H‐reflex magnitude |
| title_full_unstemmed | Adaptive gait responses to varying weight‐bearing conditions: Inferences from gait dynamics and H‐reflex magnitude |
| title_short | Adaptive gait responses to varying weight‐bearing conditions: Inferences from gait dynamics and H‐reflex magnitude |
| title_sort | adaptive gait responses to varying weight bearing conditions inferences from gait dynamics and h reflex magnitude |
| topic | balance H‐reflex loading conditions spinal reflex walking |
| url | https://doi.org/10.1113/EP091492 |
| work_keys_str_mv | AT yongkukkim adaptivegaitresponsestovaryingweightbearingconditionsinferencesfromgaitdynamicsandhreflexmagnitude AT michellegwerder adaptivegaitresponsestovaryingweightbearingconditionsinferencesfromgaitdynamicsandhreflexmagnitude AT williamrtaylor adaptivegaitresponsestovaryingweightbearingconditionsinferencesfromgaitdynamicsandhreflexmagnitude AT heinerbaur adaptivegaitresponsestovaryingweightbearingconditionsinferencesfromgaitdynamicsandhreflexmagnitude AT navragbsingh adaptivegaitresponsestovaryingweightbearingconditionsinferencesfromgaitdynamicsandhreflexmagnitude |
