| Summary: | Abstract Background Prognostic prediction is crucial to guide individual treatment for patients with rectal cancer. We aimed to develop and validated a multitask deep learning model for predicting prognosis in rectal cancer patients. Methods This retrospective study enrolled 321 rectal cancer patients (training set: 212; internal testing set: 53; external testing set: 56) who directly received total mesorectal excision from five hospitals between March 2014 to April 2021. A multitask deep learning model was developed to simultaneously predict recurrence/metastasis and disease-free survival (DFS). The model integrated clinicopathologic data and multiparametric magnetic resonance imaging (MRI) images including diffusion kurtosis imaging (DKI), without performing tumor segmentation. The receiver operating characteristic (ROC) curve and Harrell’s concordance index (C-index) were used to evaluate the predictive performance of the proposed model. Results The deep learning model achieved good discrimination capability of recurrence/metastasis, with area under the curve (AUC) values of 0.885, 0.846, and 0.797 in the training, internal testing and external testing sets, respectively. Furthermore, the model successfully predicted DFS in the training set (C-index: 0.812), internal testing set (C-index: 0.794), and external testing set (C-index: 0.733), and classified patients into significantly distinct high- and low-risk groups (p < 0.05). Conclusions The multitask deep learning model, incorporating clinicopathologic data and multiparametric MRI, effectively predicted both recurrence/metastasis and survival for patients with rectal cancer. It has the potential to be an essential tool for risk stratification, and assist in making individualized treatment decisions. Clinical trial number Not applicable.
|