| Summary: | Plant viruses have evolved from being viewed exclusively as pathogens into versatile and powerful tools for modern biotechnology. Among them, Tomato bushy stunt virus (TBSV) holds a special place due to its well-studied molecular biology and unique structural properties. This review systematizes the knowledge on TBSV’s dual role as a multifunctional platform. On one hand, we cover its application as a viral vector for the highly efficient expression of recombinant proteins in plants, as well as a tool for functional genomics, including Virus-Induced Gene Silencing (VIGS) and the delivery of CRISPR/Cas9 gene-editing components. On the other hand, we provide a detailed analysis of the use of the stable and monodisperse TBSV virion in nanobiotechnology. Its capsid serves as an ideal scaffold for creating next-generation vaccine candidates, platforms for targeted drug delivery to tumor cells, and as a building block for the programmable self-assembly of complex nanoarchitectures. In conclusion, key challenges limiting the widespread adoption of the platform are discussed, including the genetic instability of vectors and difficulties in scalable purification, along with promising strategies to overcome them.
|