BNResNet: Batch Normalization-Inspired Deep Bottleneck Residual Architecture for Aerial Scene Recognition in Low-Contrast Remote Sensing Images
Remote sensing (RS) images are evolving daily for their applications in surveillance, planned urbanization, law enforcement, climate change detection, agriculture, and monitoring catastrophes. Artificial intelligence techniques in this application heavily depend on the quality of RS images. The low-...
| 出版年: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
|---|---|
| 主要な著者: | , , , , , , |
| フォーマット: | 論文 |
| 言語: | 英語 |
| 出版事項: |
IEEE
2025-01-01
|
| 主題: | |
| オンライン・アクセス: | https://ieeexplore.ieee.org/document/11108310/ |
