Naringin Suppresses CoCl<sub>2</sub>-Induced Ferroptosis in ARPE-19 Cells

Hypoxic damage to retinal pigment epithelial (RPE) cells and subsequent neovascularization are key factors in the pathogenesis of branch retinal vein occlusion (BRVO). Naringin (NG), a naturally occurring flavanone glycoside, has demonstrated significant antioxidant and anti-neovascular activities....

Full description

Bibliographic Details
Published in:Antioxidants
Main Authors: Yuchang Yang, Manting Liu, Xiaoxv Dong, Jie Bai, Wenjuan Shi, Qian Zhu, Juan Liu, Ziheng Wang, Lisa Yi, Xingbin Yin, Jian Ni, Changhai Qu
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Subjects:
Online Access:https://www.mdpi.com/2076-3921/14/2/236
Description
Summary:Hypoxic damage to retinal pigment epithelial (RPE) cells and subsequent neovascularization are key factors in the pathogenesis of branch retinal vein occlusion (BRVO). Naringin (NG), a naturally occurring flavanone glycoside, has demonstrated significant antioxidant and anti-neovascular activities. However, the regulatory effects and mechanisms of NG on ferroptosis in BRVO are yet to be explored. Our study aimed to investigate the protective effects of NG on RPE cells under hypoxic stress and to elucidate the underlying molecular mechanisms. Our findings revealed that NG significantly reduced cytotoxicity induced by cobaltous chloride (CoCl<sub>2</sub>) and also inhibited vascular proliferation in the retina, thereby attenuating choroidal neovascularization. NG pretreatment largely countered the overproduction of reactive oxygen species (ROS) and malondialdehyde (MDA) triggered by hypoxic damage, while also restoring levels of the antioxidants glutathione (GSH) and superoxide dismutase (SOD). Furthermore, NG pretreatment significantly activated the expression of hypoxia-inducible factor-1 alpha (HIF-1α) and its downstream heme oxygenase-1 (HO-1) and NADPH dehydrogenase (NQO1). In conclusion, NG not only inhibits neovascularization but also alleviates inflammation in RPE cells by modulating the HO-1/GPX4 pathway to inhibit ferroptosis. These findings highlight the potential of NG as a promising therapeutic agent for the treatment of BRVO.
ISSN:2076-3921