Some Identities Involving the Fubini Polynomials and Euler Polynomials
In this paper, we first introduce a new second-order non-linear recursive polynomials <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>U</mi> <mrow> <mi>h</mi> <mo>,</mo> <mi>i</mi> &l...
| 出版年: | Mathematics |
|---|---|
| 主要な著者: | , |
| フォーマット: | 論文 |
| 言語: | 英語 |
| 出版事項: |
MDPI AG
2018-12-01
|
| 主題: | |
| オンライン・アクセス: | https://www.mdpi.com/2227-7390/6/12/300 |
| _version_ | 1852728562520424448 |
|---|---|
| author | Guohui Chen Li Chen |
| author_facet | Guohui Chen Li Chen |
| author_sort | Guohui Chen |
| collection | DOAJ |
| container_title | Mathematics |
| description | In this paper, we first introduce a new second-order non-linear recursive polynomials <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>U</mi> <mrow> <mi>h</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, and then use these recursive polynomials, the properties of the power series and the combinatorial methods to prove some identities involving the Fubini polynomials, Euler polynomials and Euler numbers. |
| format | Article |
| id | doaj-art-d03edfa5e8564d1a95aa714d24a48129 |
| institution | Directory of Open Access Journals |
| issn | 2227-7390 |
| language | English |
| publishDate | 2018-12-01 |
| publisher | MDPI AG |
| record_format | Article |
| spelling | doaj-art-d03edfa5e8564d1a95aa714d24a481292025-08-19T21:09:33ZengMDPI AGMathematics2227-73902018-12-0161230010.3390/math6120300math6120300Some Identities Involving the Fubini Polynomials and Euler PolynomialsGuohui Chen0Li Chen1College of Mathematics & Statistics, Hainan Normal University, Haikou 571158, ChinaSchool of Mathematics, Northwest University, Xi’an 710127, ChinaIn this paper, we first introduce a new second-order non-linear recursive polynomials <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>U</mi> <mrow> <mi>h</mi> <mo>,</mo> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </semantics> </math> </inline-formula>, and then use these recursive polynomials, the properties of the power series and the combinatorial methods to prove some identities involving the Fubini polynomials, Euler polynomials and Euler numbers.https://www.mdpi.com/2227-7390/6/12/300Fubini polynomialsEuler polynomialsrecursive polynomialscombinatorial methodpower series identity |
| spellingShingle | Guohui Chen Li Chen Some Identities Involving the Fubini Polynomials and Euler Polynomials Fubini polynomials Euler polynomials recursive polynomials combinatorial method power series identity |
| title | Some Identities Involving the Fubini Polynomials and Euler Polynomials |
| title_full | Some Identities Involving the Fubini Polynomials and Euler Polynomials |
| title_fullStr | Some Identities Involving the Fubini Polynomials and Euler Polynomials |
| title_full_unstemmed | Some Identities Involving the Fubini Polynomials and Euler Polynomials |
| title_short | Some Identities Involving the Fubini Polynomials and Euler Polynomials |
| title_sort | some identities involving the fubini polynomials and euler polynomials |
| topic | Fubini polynomials Euler polynomials recursive polynomials combinatorial method power series identity |
| url | https://www.mdpi.com/2227-7390/6/12/300 |
| work_keys_str_mv | AT guohuichen someidentitiesinvolvingthefubinipolynomialsandeulerpolynomials AT lichen someidentitiesinvolvingthefubinipolynomialsandeulerpolynomials |
