| Summary: | Cardiovascular diseases are the leading cause of death worldwide, with arrhythmia being a prevalent and potentially fatal condition. The multi-lead electrocardiogram (ECG) is the primary tool for detecting arrhythmias. However, existing detection methods have shortcomings: they cannot dynamically integrate inter-lead correlations with multi-scale temporal changes in cardiac electrical activity. They also lack mechanisms to simultaneously focus on key leads and time segments, and thus fail to address multi-lead redundancy or capture comprehensive spatial-temporal relationships. To solve these problems, we propose a Multi-Scale Lead-Temporal Co-Attention Framework (MS-LTCAF). Our framework incorporates two key components: a Lead-Temporal Co-Attention Residual (LTCAR) module that dynamically weights the importance of leads and time segments, and a multi-scale branch structure that integrates features of cardiac electrical activity across different time periods. Together, these components enable the framework to automatically extract and integrate features within a single lead, between different leads, and across multiple time scales from ECG signals. Experimental results demonstrate that MS-LTCAF outperforms existing methods. On the PTB-XL dataset, it achieves an AUC of 0.927, approximately 1% higher than the current optimal baseline model (DNN_zhu’s 0.918). On the LUDB dataset, it ranks first in terms of AUC (0.942), accuracy (0.920), and F1-score (0.745). Furthermore, the framework can focus on key leads and time segments through the co-attention mechanism, while the multi-scale branches help capture both the details of local waveforms (such as QRS complexes) and the overall rhythm patterns (such as RR intervals).
|