Molecular basis of pigment structural diversity in echinoderms

Summary: The varied pigments found in animals play both ecological and physiological roles. Virtually all echinoderms contain putative pigment biosynthetic enzymes, the polyketide synthases (PKSs). Among these, crinoids have complex pigments found both today and in ancient fossils. Here, we characte...

Full description

Bibliographic Details
Published in:iScience
Main Authors: Feng Li, Zhenjian Lin, Eric W. Schmidt
Format: Article
Language:English
Published: Elsevier 2024-09-01
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004224020595
Description
Summary:Summary: The varied pigments found in animals play both ecological and physiological roles. Virtually all echinoderms contain putative pigment biosynthetic enzymes, the polyketide synthases (PKSs). Among these, crinoids have complex pigments found both today and in ancient fossils. Here, we characterize a key pigment biosynthetic enzyme, CrPKS from the crinoid Anneissia japonica. We show that CrPKS produces 14-carbon aromatic pigment precursors. Despite making a compound previously found in fungi, the crinoid enzyme operates by different biochemical principles, helping to explain the diverse animal PKSs found throughout the metazoan (animal) kingdom. Unlike SpPks1 from sea urchins that had strict starter unit selectivity, CrPKS also incorporated starter units butyryl- or ethylmalonyl-CoA to synthesize a crinoid pigment precursor with a saturated side chain. By performing biochemical experiments, we show how changes in the echinoderm pigment biosynthetic enzymes unveil the vast variety of colors found in animals today.
ISSN:2589-0042