Weighted quadrature formulas for semi-infinite range integrals

Weighted quadrature formulas on the half line \((a,+\infty)\), \(a>0\), for non-exponentially decreasing integrands are developed. Such \(n\)-point quadrature rules are exact for all functions of the form \(x\mapsto x^{-2}P(x^{-1})\), where \(P\) is an arbitrary algebraic polynomial of degree at...

وصف كامل

التفاصيل البيبلوغرافية
الحاوية / القاعدة:Journal of Numerical Analysis and Approximation Theory
المؤلف الرئيسي: Gradimir V. Milovanović
التنسيق: مقال
اللغة:الإنجليزية
منشور في: Publishing House of the Romanian Academy 2015-12-01
الموضوعات:
الوصول للمادة أونلاين:https://ictp.acad.ro/jnaat/journal/article/view/1063
الوصف
الملخص:Weighted quadrature formulas on the half line \((a,+\infty)\), \(a>0\), for non-exponentially decreasing integrands are developed. Such \(n\)-point quadrature rules are exact for all functions of the form \(x\mapsto x^{-2}P(x^{-1})\), where \(P\) is an arbitrary algebraic polynomial of degree at most \(2n-1\). In particular, quadrature formulas with respect to the weight function \(x\mapsto w(x)=x^\beta\log^m x\) (\(0\le \beta<1\), \(m\in \mathbb{N}_0\)) are considered and several numerical examples are included.
تدمد:2457-6794
2501-059X