A New Ridge-Type Estimator for the Gamma regression model

 When there is collinearity among the regressors in gamma regression models, we present a new two-parameter ridge estimator in this study. We look into the new estimator's mean squared error characteristics. Additionally, we offer several theorems to contrast the new estimators with the curren...

وصف كامل

التفاصيل البيبلوغرافية
الحاوية / القاعدة:Iraqi Journal for Computer Science and Mathematics
المؤلفون الرئيسيون: Ahmed Maher Salih, Zakariya Algamal, Mundher Abdullah Khaleel
التنسيق: مقال
اللغة:الإنجليزية
منشور في: College of Education, Al-Iraqia University 2024-01-01
الموضوعات:
الوصول للمادة أونلاين:https://journal.esj.edu.iq/index.php/IJCM/article/view/812
الوصف
الملخص: When there is collinearity among the regressors in gamma regression models, we present a new two-parameter ridge estimator in this study. We look into the new estimator's mean squared error characteristics. Additionally, we offer several theorems to contrast the new estimators with the current ones. To compare the estimators under various collinearity designs in terms of mean squared error, we run a Monte Carlo simulation analysis. We also offer a real data application to demonstrate the usefulness of the new estimator. The results from simulations and actual data reveal that the proposed estimator is superior to competing estimators.
تدمد:2958-0544
2788-7421