Acute brain injury risk prediction models in venoarterial extracorporeal membrane oxygenation patients with tree-based machine learning: An Extracorporeal Life Support Organization Registry analysisCentral MessagePerspective

Objective: We aimed to determine if machine learning can predict acute brain injury and to identify modifiable risk factors for acute brain injury in patients receiving venoarterial extracorporeal membrane oxygenation. Methods: We included adults (age ≥18 years) receiving venoarterial extracorporeal...

Full description

Bibliographic Details
Published in:JTCVS Open
Main Authors: Andrew Kalra, BS, Preetham Bachina, BS, Benjamin L. Shou, BS, Jaeho Hwang, MD, MPH, Meylakh Barshay, BS, Shreyas Kulkarni, BS, Isaac Sears, BS, Carsten Eickhoff, PhD, Christian A. Bermudez, MD, Daniel Brodie, MD, Corey E. Ventetuolo, MD, MS, Bo Soo Kim, MD, Glenn J.R. Whitman, MD, Adeel Abbasi, MD, ScM, Sung-Min Cho, DO, MHS, Bo Soo Kim, David Hager, Steven P. Keller, Errol L. Bush, R. Scott Stephens, Shivalika Khanduja, Jin Kook Kang, Ifeanyi David Chinedozi, Zachary Darby, Hannah J. Rando, Trish Brown, Jiah Kim, Christopher Wilcox, Albert Leng, Andrew Geeza, Armaan F. Akbar, Chengyuan Alex Feng, David Zhao, Marc Sussman, Pedro Alejandro Mendez-Tellez, Philip Sun, Karlo Capili, Ramon Riojas, Diane Alejo, Scott Stephen, Harry Flaster
Format: Article
Language:English
Published: Elsevier 2024-08-01
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S266627362400158X
_version_ 1850338301799563264
author Andrew Kalra, BS
Preetham Bachina, BS
Benjamin L. Shou, BS
Jaeho Hwang, MD, MPH
Meylakh Barshay, BS
Shreyas Kulkarni, BS
Isaac Sears, BS
Carsten Eickhoff, PhD
Christian A. Bermudez, MD
Daniel Brodie, MD
Corey E. Ventetuolo, MD, MS
Bo Soo Kim, MD
Glenn J.R. Whitman, MD
Adeel Abbasi, MD, ScM
Sung-Min Cho, DO, MHS
Bo Soo Kim
David Hager
Steven P. Keller
Errol L. Bush
R. Scott Stephens
Shivalika Khanduja
Jin Kook Kang
Ifeanyi David Chinedozi
Zachary Darby
Hannah J. Rando
Trish Brown
Jiah Kim
Christopher Wilcox
Albert Leng
Andrew Geeza
Armaan F. Akbar
Chengyuan Alex Feng
David Zhao
Marc Sussman
Pedro Alejandro Mendez-Tellez
Philip Sun
Karlo Capili
Ramon Riojas
Diane Alejo
Scott Stephen
Harry Flaster
author_facet Andrew Kalra, BS
Preetham Bachina, BS
Benjamin L. Shou, BS
Jaeho Hwang, MD, MPH
Meylakh Barshay, BS
Shreyas Kulkarni, BS
Isaac Sears, BS
Carsten Eickhoff, PhD
Christian A. Bermudez, MD
Daniel Brodie, MD
Corey E. Ventetuolo, MD, MS
Bo Soo Kim, MD
Glenn J.R. Whitman, MD
Adeel Abbasi, MD, ScM
Sung-Min Cho, DO, MHS
Bo Soo Kim
David Hager
Steven P. Keller
Errol L. Bush
R. Scott Stephens
Shivalika Khanduja
Jin Kook Kang
Ifeanyi David Chinedozi
Zachary Darby
Hannah J. Rando
Trish Brown
Jiah Kim
Christopher Wilcox
Albert Leng
Andrew Geeza
Armaan F. Akbar
Chengyuan Alex Feng
David Zhao
Marc Sussman
Pedro Alejandro Mendez-Tellez
Philip Sun
Karlo Capili
Ramon Riojas
Diane Alejo
Scott Stephen
Harry Flaster
author_sort Andrew Kalra, BS
collection DOAJ
container_title JTCVS Open
description Objective: We aimed to determine if machine learning can predict acute brain injury and to identify modifiable risk factors for acute brain injury in patients receiving venoarterial extracorporeal membrane oxygenation. Methods: We included adults (age ≥18 years) receiving venoarterial extracorporeal membrane oxygenation or extracorporeal cardiopulmonary resuscitation in the Extracorporeal Life Support Organization Registry (2009-2021). Our primary outcome was acute brain injury: central nervous system ischemia, intracranial hemorrhage, brain death, and seizures. We used Random Forest, CatBoost, LightGBM, and XGBoost machine learning algorithms (10-fold leave-1-out cross-validation) to predict and identify features most important for acute brain injury. We extracted 65 total features: demographics, pre-extracorporeal membrane oxygenation/on-extracorporeal membrane oxygenation laboratory values, and pre-extracorporeal membrane oxygenation/on-extracorporeal membrane oxygenation settings. Results: Of 35,855 patients receiving venoarterial extracorporeal membrane oxygenation (nonextracorporeal cardiopulmonary resuscitation) (median age of 57.8 years, 66% were male), 7.7% (n = 2769) experienced acute brain injury. In venoarterial extracorporeal membrane oxygenation (nonextracorporeal cardiopulmonary resuscitation), the area under the receiver operator characteristic curves to predict acute brain injury, central nervous system ischemia, and intracranial hemorrhage were 0.67, 0.67, and 0.62, respectively. The true-positive, true-negative, false-positive, false-negative, positive, and negative predictive values were 33%, 88%, 12%, 67%, 18%, and 94%, respectively, for acute brain injury. Longer extracorporeal membrane oxygenation duration, higher 24-hour extracorporeal membrane oxygenation pump flow, and higher on-extracorporeal membrane oxygenation partial pressure of oxygen were associated with acute brain injury. Of 10,775 patients receiving extracorporeal cardiopulmonary resuscitation (median age of 57.1 years, 68% were male), 16.5% (n = 1787) experienced acute brain injury. The area under the receiver operator characteristic curves for acute brain injury, central nervous system ischemia, and intracranial hemorrhage were 0.72, 0.73, and 0.69, respectively. Longer extracorporeal membrane oxygenation duration, older age, and higher 24-hour extracorporeal membrane oxygenation pump flow were associated with acute brain injury. Conclusions: In the largest study predicting neurological complications with machine learning in extracorporeal membrane oxygenation, longer extracorporeal membrane oxygenation duration and higher 24-hour pump flow were associated with acute brain injury in nonextracorporeal cardiopulmonary resuscitation and extracorporeal cardiopulmonary resuscitation venoarterial extracorporeal membrane oxygenation.
format Article
id doaj-art-e3e4cc8585cb4eef88e6ee78bd514c99
institution Directory of Open Access Journals
issn 2666-2736
language English
publishDate 2024-08-01
publisher Elsevier
record_format Article
spelling doaj-art-e3e4cc8585cb4eef88e6ee78bd514c992025-08-19T23:15:18ZengElsevierJTCVS Open2666-27362024-08-0120648810.1016/j.xjon.2024.06.001Acute brain injury risk prediction models in venoarterial extracorporeal membrane oxygenation patients with tree-based machine learning: An Extracorporeal Life Support Organization Registry analysisCentral MessagePerspectiveAndrew Kalra, BS0Preetham Bachina, BS1Benjamin L. Shou, BS2Jaeho Hwang, MD, MPH3Meylakh Barshay, BS4Shreyas Kulkarni, BS5Isaac Sears, BS6Carsten Eickhoff, PhD7Christian A. Bermudez, MD8Daniel Brodie, MD9Corey E. Ventetuolo, MD, MS10Bo Soo Kim, MD11Glenn J.R. Whitman, MD12Adeel Abbasi, MD, ScM13Sung-Min Cho, DO, MHS14Bo Soo KimDavid HagerSteven P. KellerErrol L. BushR. Scott StephensShivalika KhandujaJin Kook KangIfeanyi David ChinedoziZachary DarbyHannah J. RandoTrish BrownJiah KimChristopher WilcoxAlbert LengAndrew GeezaArmaan F. AkbarChengyuan Alex FengDavid ZhaoMarc SussmanPedro Alejandro Mendez-TellezPhilip SunKarlo CapiliRamon RiojasDiane AlejoScott StephenHarry FlasterDivision of Cardiac Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, Md; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PaDivision of Cardiac Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, MdDivision of Cardiac Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, MdDivision of Epilepsy, Department of Neurology, Johns Hopkins Hospital, Baltimore, MdWarren Alpert Medical School of Brown University, Providence, RIWarren Alpert Medical School of Brown University, Providence, RIWarren Alpert Medical School of Brown University, Providence, RIDepartment of Computer Science, Brown University, Providence, RI; Faculty of Medicine, University of Tübingen, Tübingen, Germany; Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, GermanyDivision of Cardiovascular Surgery, Department of Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PaDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MdDivision of Pulmonary, Critical Care and Sleep Medicine, Warren Alpert Medical School of Brown University, Providence, RIDivision of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MdDivision of Cardiac Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, MdDivision of Pulmonary, Critical Care and Sleep Medicine, Warren Alpert Medical School of Brown University, Providence, RIDivision of Cardiac Surgery, Department of Surgery, Johns Hopkins Hospital, Baltimore, Md; Division of Neurosciences Critical Care, Department of Neurology, Neurosurgery, Anesthesiology and Critical Care Medicine, Johns Hopkins Hospital, Baltimore, Md; Address for reprints: Sung-Min Cho, DO, MHS, Division of Neurosciences Critical Care, The Johns Hopkins Hospital, 600 N Wolfe St, Phipps 455, Baltimore, MD 21287.Objective: We aimed to determine if machine learning can predict acute brain injury and to identify modifiable risk factors for acute brain injury in patients receiving venoarterial extracorporeal membrane oxygenation. Methods: We included adults (age ≥18 years) receiving venoarterial extracorporeal membrane oxygenation or extracorporeal cardiopulmonary resuscitation in the Extracorporeal Life Support Organization Registry (2009-2021). Our primary outcome was acute brain injury: central nervous system ischemia, intracranial hemorrhage, brain death, and seizures. We used Random Forest, CatBoost, LightGBM, and XGBoost machine learning algorithms (10-fold leave-1-out cross-validation) to predict and identify features most important for acute brain injury. We extracted 65 total features: demographics, pre-extracorporeal membrane oxygenation/on-extracorporeal membrane oxygenation laboratory values, and pre-extracorporeal membrane oxygenation/on-extracorporeal membrane oxygenation settings. Results: Of 35,855 patients receiving venoarterial extracorporeal membrane oxygenation (nonextracorporeal cardiopulmonary resuscitation) (median age of 57.8 years, 66% were male), 7.7% (n = 2769) experienced acute brain injury. In venoarterial extracorporeal membrane oxygenation (nonextracorporeal cardiopulmonary resuscitation), the area under the receiver operator characteristic curves to predict acute brain injury, central nervous system ischemia, and intracranial hemorrhage were 0.67, 0.67, and 0.62, respectively. The true-positive, true-negative, false-positive, false-negative, positive, and negative predictive values were 33%, 88%, 12%, 67%, 18%, and 94%, respectively, for acute brain injury. Longer extracorporeal membrane oxygenation duration, higher 24-hour extracorporeal membrane oxygenation pump flow, and higher on-extracorporeal membrane oxygenation partial pressure of oxygen were associated with acute brain injury. Of 10,775 patients receiving extracorporeal cardiopulmonary resuscitation (median age of 57.1 years, 68% were male), 16.5% (n = 1787) experienced acute brain injury. The area under the receiver operator characteristic curves for acute brain injury, central nervous system ischemia, and intracranial hemorrhage were 0.72, 0.73, and 0.69, respectively. Longer extracorporeal membrane oxygenation duration, older age, and higher 24-hour extracorporeal membrane oxygenation pump flow were associated with acute brain injury. Conclusions: In the largest study predicting neurological complications with machine learning in extracorporeal membrane oxygenation, longer extracorporeal membrane oxygenation duration and higher 24-hour pump flow were associated with acute brain injury in nonextracorporeal cardiopulmonary resuscitation and extracorporeal cardiopulmonary resuscitation venoarterial extracorporeal membrane oxygenation.http://www.sciencedirect.com/science/article/pii/S266627362400158Xacute brain injuryExtracorporeal Life Support Organizationextracorporeal membrane oxygenationmachine learningneurological complications
spellingShingle Andrew Kalra, BS
Preetham Bachina, BS
Benjamin L. Shou, BS
Jaeho Hwang, MD, MPH
Meylakh Barshay, BS
Shreyas Kulkarni, BS
Isaac Sears, BS
Carsten Eickhoff, PhD
Christian A. Bermudez, MD
Daniel Brodie, MD
Corey E. Ventetuolo, MD, MS
Bo Soo Kim, MD
Glenn J.R. Whitman, MD
Adeel Abbasi, MD, ScM
Sung-Min Cho, DO, MHS
Bo Soo Kim
David Hager
Steven P. Keller
Errol L. Bush
R. Scott Stephens
Shivalika Khanduja
Jin Kook Kang
Ifeanyi David Chinedozi
Zachary Darby
Hannah J. Rando
Trish Brown
Jiah Kim
Christopher Wilcox
Albert Leng
Andrew Geeza
Armaan F. Akbar
Chengyuan Alex Feng
David Zhao
Marc Sussman
Pedro Alejandro Mendez-Tellez
Philip Sun
Karlo Capili
Ramon Riojas
Diane Alejo
Scott Stephen
Harry Flaster
Acute brain injury risk prediction models in venoarterial extracorporeal membrane oxygenation patients with tree-based machine learning: An Extracorporeal Life Support Organization Registry analysisCentral MessagePerspective
acute brain injury
Extracorporeal Life Support Organization
extracorporeal membrane oxygenation
machine learning
neurological complications
title Acute brain injury risk prediction models in venoarterial extracorporeal membrane oxygenation patients with tree-based machine learning: An Extracorporeal Life Support Organization Registry analysisCentral MessagePerspective
title_full Acute brain injury risk prediction models in venoarterial extracorporeal membrane oxygenation patients with tree-based machine learning: An Extracorporeal Life Support Organization Registry analysisCentral MessagePerspective
title_fullStr Acute brain injury risk prediction models in venoarterial extracorporeal membrane oxygenation patients with tree-based machine learning: An Extracorporeal Life Support Organization Registry analysisCentral MessagePerspective
title_full_unstemmed Acute brain injury risk prediction models in venoarterial extracorporeal membrane oxygenation patients with tree-based machine learning: An Extracorporeal Life Support Organization Registry analysisCentral MessagePerspective
title_short Acute brain injury risk prediction models in venoarterial extracorporeal membrane oxygenation patients with tree-based machine learning: An Extracorporeal Life Support Organization Registry analysisCentral MessagePerspective
title_sort acute brain injury risk prediction models in venoarterial extracorporeal membrane oxygenation patients with tree based machine learning an extracorporeal life support organization registry analysiscentral messageperspective
topic acute brain injury
Extracorporeal Life Support Organization
extracorporeal membrane oxygenation
machine learning
neurological complications
url http://www.sciencedirect.com/science/article/pii/S266627362400158X
work_keys_str_mv AT andrewkalrabs acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT preethambachinabs acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT benjaminlshoubs acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT jaehohwangmdmph acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT meylakhbarshaybs acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT shreyaskulkarnibs acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT isaacsearsbs acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT carsteneickhoffphd acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT christianabermudezmd acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT danielbrodiemd acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT coreyeventetuolomdms acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT bosookimmd acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT glennjrwhitmanmd acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT adeelabbasimdscm acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT sungminchodomhs acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT bosookim acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT davidhager acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT stevenpkeller acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT errollbush acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT rscottstephens acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT shivalikakhanduja acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT jinkookkang acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT ifeanyidavidchinedozi acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT zacharydarby acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT hannahjrando acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT trishbrown acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT jiahkim acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT christopherwilcox acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT albertleng acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT andrewgeeza acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT armaanfakbar acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT chengyuanalexfeng acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT davidzhao acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT marcsussman acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT pedroalejandromendeztellez acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT philipsun acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT karlocapili acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT ramonriojas acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT dianealejo acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT scottstephen acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective
AT harryflaster acutebraininjuryriskpredictionmodelsinvenoarterialextracorporealmembraneoxygenationpatientswithtreebasedmachinelearninganextracorporeallifesupportorganizationregistryanalysiscentralmessageperspective