Quantifying negative selection on synonymous variants
Summary: Widespread adoption of DNA sequencing has resulted in large numbers of genetic variants, whose contribution to disease is not easily determined. Although many types of variation are known to disrupt cellular processes in predictable ways, for some categories of variants, the effects may not...
| الحاوية / القاعدة: | HGG Advances |
|---|---|
| المؤلفون الرئيسيون: | , , |
| التنسيق: | مقال |
| اللغة: | الإنجليزية |
| منشور في: |
Elsevier
2024-04-01
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | http://www.sciencedirect.com/science/article/pii/S2666247724000010 |
| _version_ | 1850065606256099328 |
|---|---|
| author | Mikhail Gudkov Loïc Thibaut Eleni Giannoulatou |
| author_facet | Mikhail Gudkov Loïc Thibaut Eleni Giannoulatou |
| author_sort | Mikhail Gudkov |
| collection | DOAJ |
| container_title | HGG Advances |
| description | Summary: Widespread adoption of DNA sequencing has resulted in large numbers of genetic variants, whose contribution to disease is not easily determined. Although many types of variation are known to disrupt cellular processes in predictable ways, for some categories of variants, the effects may not be directly detectable. A particular example is synonymous variants, that is, those single-nucleotide variants that create a codon substitution, such that the produced amino acid sequence is unaffected. Contrary to the original theory suggesting that synonymous variants are benign, there is a growing volume of research showing that, despite their “silent” mechanism of action, some synonymous variation may be deleterious. Here, we studied the extent of the negative selective pressure acting on different classes of synonymous variants by analyzing the relative enrichment of synonymous singleton variants in the human exomes provided by gnomAD. Using a modification of the mutability-adjusted proportion of singletons (MAPS) metric as a measure of purifying selection, we found that some classes of synonymous variants are subject to stronger negative selection than others. For instance, variants that reduce codon optimality undergo stronger selection than optimality-increasing variants. Besides, selection affects synonymous variants implicated in splice-site-loss or splice-site-gain events. To understand what drives this negative selection, we tested a number of predictors in the aim to explain the variability in the selection scores. Our findings provide insights into the effects of synonymous variants at the population level, highlighting the specifics of the role that these variants play in health and disease. |
| format | Article |
| id | doaj-art-e48d4c242c734e6f969fb9231de37f5e |
| institution | Directory of Open Access Journals |
| issn | 2666-2477 |
| language | English |
| publishDate | 2024-04-01 |
| publisher | Elsevier |
| record_format | Article |
| spelling | doaj-art-e48d4c242c734e6f969fb9231de37f5e2025-08-20T00:19:43ZengElsevierHGG Advances2666-24772024-04-015210026210.1016/j.xhgg.2024.100262Quantifying negative selection on synonymous variantsMikhail Gudkov0Loïc Thibaut1Eleni Giannoulatou2Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent’s Clinical School, UNSW Sydney, Sydney, NSW 2052, AustraliaVictor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; School of Mathematics and Statistics, UNSW Sydney, Sydney, NSW 2052, AustraliaVictor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent’s Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia; Corresponding authorSummary: Widespread adoption of DNA sequencing has resulted in large numbers of genetic variants, whose contribution to disease is not easily determined. Although many types of variation are known to disrupt cellular processes in predictable ways, for some categories of variants, the effects may not be directly detectable. A particular example is synonymous variants, that is, those single-nucleotide variants that create a codon substitution, such that the produced amino acid sequence is unaffected. Contrary to the original theory suggesting that synonymous variants are benign, there is a growing volume of research showing that, despite their “silent” mechanism of action, some synonymous variation may be deleterious. Here, we studied the extent of the negative selective pressure acting on different classes of synonymous variants by analyzing the relative enrichment of synonymous singleton variants in the human exomes provided by gnomAD. Using a modification of the mutability-adjusted proportion of singletons (MAPS) metric as a measure of purifying selection, we found that some classes of synonymous variants are subject to stronger negative selection than others. For instance, variants that reduce codon optimality undergo stronger selection than optimality-increasing variants. Besides, selection affects synonymous variants implicated in splice-site-loss or splice-site-gain events. To understand what drives this negative selection, we tested a number of predictors in the aim to explain the variability in the selection scores. Our findings provide insights into the effects of synonymous variants at the population level, highlighting the specifics of the role that these variants play in health and disease.http://www.sciencedirect.com/science/article/pii/S2666247724000010synonymous variantscodon optimalitynegative selectionvariant deleteriousness |
| spellingShingle | Mikhail Gudkov Loïc Thibaut Eleni Giannoulatou Quantifying negative selection on synonymous variants synonymous variants codon optimality negative selection variant deleteriousness |
| title | Quantifying negative selection on synonymous variants |
| title_full | Quantifying negative selection on synonymous variants |
| title_fullStr | Quantifying negative selection on synonymous variants |
| title_full_unstemmed | Quantifying negative selection on synonymous variants |
| title_short | Quantifying negative selection on synonymous variants |
| title_sort | quantifying negative selection on synonymous variants |
| topic | synonymous variants codon optimality negative selection variant deleteriousness |
| url | http://www.sciencedirect.com/science/article/pii/S2666247724000010 |
| work_keys_str_mv | AT mikhailgudkov quantifyingnegativeselectiononsynonymousvariants AT loicthibaut quantifyingnegativeselectiononsynonymousvariants AT elenigiannoulatou quantifyingnegativeselectiononsynonymousvariants |
