Textual, Non-Textual, and Hybrid Feature Engineering for SMS Spam Classification
Contemporary spam filters increasingly rely on resource-intensive, deep learning models. This study evaluates the performance, robustness, and deployability of lightweight learning models. It provides a head-to-head evaluation of probabilistic (Naïve Bayes) and margin-based (Support Vecto...
| الحاوية / القاعدة: | IEEE Access |
|---|---|
| المؤلفون الرئيسيون: | , |
| التنسيق: | مقال |
| اللغة: | الإنجليزية |
| منشور في: |
IEEE
2025-01-01
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | https://ieeexplore.ieee.org/document/11202451/ |
