| Summary: | Friction stir welding (FSW) has emerged as a solid-state joining technique offering notable advantages over traditional welding methods. Gas metal arc welding (GMAW), a fusion-based process, remains widely used due to its high efficiency, productivity, weld quality, and ease of automation. To combine the benefits of both techniques, a hybrid welding approach integrating GMAW and FSW has been developed. This study investigates the impact of this hybrid technique on the joint quality and properties of AA5083-H111 and AA6082-T6 aluminum alloys. Butt joints were produced on 6 mm thick plates, with variations in friction process parameters. Characterization included macro- and microstructural analyses, mechanical testing (hardness and tensile strength), and corrosion resistance evaluation through stress corrosion cracking tests. Results showed that FSW significantly refined and homogenized the microstructure in both alloys. AA5083-H111 welds achieved a joint efficiency of 99%, while AA6082-T6 reached 66.7%, differences attributed to their distinct strengthening mechanisms and the thermal–mechanical effects of FSW. To assess hydrogen-related behavior, slow strain rate tensile (SSRT) tests were conducted in both inert and hydrogen-rich environments. Hydrogen content was measured in arc, friction, and overlap zones, revealing variations depending on the alloy and microstructure. Despite these differences, both alloys exhibited negligible hydrogen embrittlement. In conclusion, the GMAW–FSW hybrid process successfully produced sound joints with good mechanical and corrosion resistance performance in both aluminum alloys. The findings demonstrate the potential of hybrid welding as a viable method for enhancing weld quality and performance in applications involving dissimilar aluminum alloys.
|