The minimizing problem involving $p$-Laplacian and Hardy–Littlewood–Sobolev upper critical exponent
In this paper, we study the minimizing problem $$ S_{p,1,\alpha,\mu}:= \inf_{u\in W^{1,p}(\mathbb{R}^{N})\setminus\{0\}} \frac{ \int_{\mathbb{R}^{N}}|\nabla u|^{p}\mathrm{d}x - \mu \int_{\mathbb{R}^{N}} \frac{|u|^{p}}{|x|^{p}} \mathrm{d}x} {\left( \int_{\mathbb{R}^{N}} \int_{\mathbb{R}^{N}} \frac{|u...
| Published in: | Electronic Journal of Qualitative Theory of Differential Equations |
|---|---|
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
University of Szeged
2018-08-01
|
| Subjects: | |
| Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=6753 |
