Vector-Valued Analytic Functions Having Vector-Valued Tempered Distributions as Boundary Values

Vector-valued analytic functions in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">C</mi><mi>n</mi></msup></semantics></mat...

詳細記述

書誌詳細
出版年:Axioms
第一著者: Richard D. Carmichael
フォーマット: 論文
言語:英語
出版事項: MDPI AG 2023-11-01
主題:
オンライン・アクセス:https://www.mdpi.com/2075-1680/12/11/1036
その他の書誌記述
要約:Vector-valued analytic functions in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">C</mi><mi>n</mi></msup></semantics></math></inline-formula>, which are known to have vector-valued tempered distributional boundary values, are shown to be in the Hardy space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>H</mi><mi>p</mi></msup><mo>,</mo><mspace width="0.277778em"></mspace><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mn>2</mn></mrow></semantics></math></inline-formula>, if the boundary value is in the vector-valued <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mi>p</mi></msup><mo>,</mo><mspace width="0.277778em"></mspace><mn>1</mn><mo>≤</mo><mi>p</mi><mo><</mo><mn>2</mn></mrow></semantics></math></inline-formula>, functions. The analysis of this paper extends the analysis of a previous paper that considered the cases for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mo>∞</mo></mrow></semantics></math></inline-formula>. Thus, with the addition of the results of this paper, the considered problems are proved for all <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>,</mo><mspace width="0.277778em"></mspace><mn>1</mn><mo>≤</mo><mi>p</mi><mo>≤</mo><mo>∞</mo></mrow></semantics></math></inline-formula>.
ISSN:2075-1680