Contribution of MALDI‐TOF mass spectrometry and machine learning including deep learning techniques for the detection of virulence factors of Clostridioides difficile strains
Abstract Clostridioides difficile (CD) infections are defined by toxins A (TcdA) and B (TcdB) along with the binary toxin (CDT). The emergence of the ‘hypervirulent’ (Hv) strain PR 027, along with PR 176 and 181, two decades ago, reshaped CD infection epidemiology in Europe. This study assessed MALD...
| Published in: | Microbial Biotechnology |
|---|---|
| Main Authors: | , , , , , , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2024-06-01
|
| Online Access: | https://doi.org/10.1111/1751-7915.14478 |
| _version_ | 1850342778263830528 |
|---|---|
| author | Alexandre Godmer Quentin Giai Gianetto Killian Le Neindre Valentine Latapy Mathilda Bastide Muriel Ehmig Valérie Lalande Nicolas Veziris Alexandra Aubry Frédéric Barbut Catherine Eckert |
| author_facet | Alexandre Godmer Quentin Giai Gianetto Killian Le Neindre Valentine Latapy Mathilda Bastide Muriel Ehmig Valérie Lalande Nicolas Veziris Alexandra Aubry Frédéric Barbut Catherine Eckert |
| author_sort | Alexandre Godmer |
| collection | DOAJ |
| container_title | Microbial Biotechnology |
| description | Abstract Clostridioides difficile (CD) infections are defined by toxins A (TcdA) and B (TcdB) along with the binary toxin (CDT). The emergence of the ‘hypervirulent’ (Hv) strain PR 027, along with PR 176 and 181, two decades ago, reshaped CD infection epidemiology in Europe. This study assessed MALDI‐TOF mass spectrometry (MALDI‐TOF MS) combined with machine learning (ML) and Deep Learning (DL) to identify toxigenic strains (producing TcdA, TcdB with or without CDT) and Hv strains. In total, 201 CD strains were analysed, comprising 151 toxigenic (24 ToxA+B+CDT+, 22 ToxA+B+CDT+ Hv+ and 105 ToxA+B+CDT−) and 50 non‐toxigenic (ToxA−B−) strains. The DL‐based classifier exhibited a 0.95 negative predictive value for excluding ToxA−B− strains, showcasing accuracy in identifying this strain category. Sensitivity in correctly identifying ToxA+B+CDT− strains ranged from 0.68 to 0.91. Additionally, all classifiers consistently demonstrated high specificity (>0.96) in detecting ToxA+B+CDT+ strains. The classifiers' performances for Hv strain detection were linked to high specificity (≥0.96). This study highlights MALDI‐TOF MS enhanced by ML techniques as a rapid and cost‐effective tool for identifying CD strain virulence factors. Our results brought a proof‐of‐concept concerning the ability of MALDI‐TOF MS coupled with ML techniques to detect virulence factor and potentially improve the outbreak's management. |
| format | Article |
| id | doaj-art-e86b24d938164ff0bcc6ee30a3965d48 |
| institution | Directory of Open Access Journals |
| issn | 1751-7915 |
| language | English |
| publishDate | 2024-06-01 |
| publisher | Wiley |
| record_format | Article |
| spelling | doaj-art-e86b24d938164ff0bcc6ee30a3965d482025-08-19T23:13:29ZengWileyMicrobial Biotechnology1751-79152024-06-01176n/an/a10.1111/1751-7915.14478Contribution of MALDI‐TOF mass spectrometry and machine learning including deep learning techniques for the detection of virulence factors of Clostridioides difficile strainsAlexandre Godmer0Quentin Giai Gianetto1Killian Le Neindre2Valentine Latapy3Mathilda Bastide4Muriel Ehmig5Valérie Lalande6Nicolas Veziris7Alexandra Aubry8Frédéric Barbut9Catherine Eckert10U1135, Centre d'Immunologie et Des Maladies Infectieuses (Cimi‐Paris) Sorbonne Université Paris FranceInstitut Pasteur Université Paris Cité, Bioinformatics and Biostatistics HUB Paris FranceAP‐HP, Sorbonne Université (Assistance Publique Hôpitaux de Paris), National Reference Laboratory for Clostridioides Difficile Paris FranceDépartement de Bactériologie AP‐HP, Sorbonne Université (Assistance Publique Hôpitaux de Paris), Groupe Hospitalier Universitaire, Sorbonne Université, Hôpital, Saint‐Antoine Paris FranceDépartement de Bactériologie AP‐HP, Sorbonne Université (Assistance Publique Hôpitaux de Paris), Groupe Hospitalier Universitaire, Sorbonne Université, Hôpital, Saint‐Antoine Paris FranceAP‐HP, Sorbonne Université (Assistance Publique Hôpitaux de Paris), National Reference Laboratory for Clostridioides Difficile Paris FranceDépartement de Bactériologie AP‐HP, Sorbonne Université (Assistance Publique Hôpitaux de Paris), Groupe Hospitalier Universitaire, Sorbonne Université, Hôpital, Saint‐Antoine Paris FranceU1135, Centre d'Immunologie et Des Maladies Infectieuses (Cimi‐Paris) Sorbonne Université Paris FranceU1135, Centre d'Immunologie et Des Maladies Infectieuses (Cimi‐Paris) Sorbonne Université Paris FranceAP‐HP, Sorbonne Université (Assistance Publique Hôpitaux de Paris), National Reference Laboratory for Clostridioides Difficile Paris FranceU1135, Centre d'Immunologie et Des Maladies Infectieuses (Cimi‐Paris) Sorbonne Université Paris FranceAbstract Clostridioides difficile (CD) infections are defined by toxins A (TcdA) and B (TcdB) along with the binary toxin (CDT). The emergence of the ‘hypervirulent’ (Hv) strain PR 027, along with PR 176 and 181, two decades ago, reshaped CD infection epidemiology in Europe. This study assessed MALDI‐TOF mass spectrometry (MALDI‐TOF MS) combined with machine learning (ML) and Deep Learning (DL) to identify toxigenic strains (producing TcdA, TcdB with or without CDT) and Hv strains. In total, 201 CD strains were analysed, comprising 151 toxigenic (24 ToxA+B+CDT+, 22 ToxA+B+CDT+ Hv+ and 105 ToxA+B+CDT−) and 50 non‐toxigenic (ToxA−B−) strains. The DL‐based classifier exhibited a 0.95 negative predictive value for excluding ToxA−B− strains, showcasing accuracy in identifying this strain category. Sensitivity in correctly identifying ToxA+B+CDT− strains ranged from 0.68 to 0.91. Additionally, all classifiers consistently demonstrated high specificity (>0.96) in detecting ToxA+B+CDT+ strains. The classifiers' performances for Hv strain detection were linked to high specificity (≥0.96). This study highlights MALDI‐TOF MS enhanced by ML techniques as a rapid and cost‐effective tool for identifying CD strain virulence factors. Our results brought a proof‐of‐concept concerning the ability of MALDI‐TOF MS coupled with ML techniques to detect virulence factor and potentially improve the outbreak's management.https://doi.org/10.1111/1751-7915.14478 |
| spellingShingle | Alexandre Godmer Quentin Giai Gianetto Killian Le Neindre Valentine Latapy Mathilda Bastide Muriel Ehmig Valérie Lalande Nicolas Veziris Alexandra Aubry Frédéric Barbut Catherine Eckert Contribution of MALDI‐TOF mass spectrometry and machine learning including deep learning techniques for the detection of virulence factors of Clostridioides difficile strains |
| title | Contribution of MALDI‐TOF mass spectrometry and machine learning including deep learning techniques for the detection of virulence factors of Clostridioides difficile strains |
| title_full | Contribution of MALDI‐TOF mass spectrometry and machine learning including deep learning techniques for the detection of virulence factors of Clostridioides difficile strains |
| title_fullStr | Contribution of MALDI‐TOF mass spectrometry and machine learning including deep learning techniques for the detection of virulence factors of Clostridioides difficile strains |
| title_full_unstemmed | Contribution of MALDI‐TOF mass spectrometry and machine learning including deep learning techniques for the detection of virulence factors of Clostridioides difficile strains |
| title_short | Contribution of MALDI‐TOF mass spectrometry and machine learning including deep learning techniques for the detection of virulence factors of Clostridioides difficile strains |
| title_sort | contribution of maldi tof mass spectrometry and machine learning including deep learning techniques for the detection of virulence factors of clostridioides difficile strains |
| url | https://doi.org/10.1111/1751-7915.14478 |
| work_keys_str_mv | AT alexandregodmer contributionofmalditofmassspectrometryandmachinelearningincludingdeeplearningtechniquesforthedetectionofvirulencefactorsofclostridioidesdifficilestrains AT quentingiaigianetto contributionofmalditofmassspectrometryandmachinelearningincludingdeeplearningtechniquesforthedetectionofvirulencefactorsofclostridioidesdifficilestrains AT killianleneindre contributionofmalditofmassspectrometryandmachinelearningincludingdeeplearningtechniquesforthedetectionofvirulencefactorsofclostridioidesdifficilestrains AT valentinelatapy contributionofmalditofmassspectrometryandmachinelearningincludingdeeplearningtechniquesforthedetectionofvirulencefactorsofclostridioidesdifficilestrains AT mathildabastide contributionofmalditofmassspectrometryandmachinelearningincludingdeeplearningtechniquesforthedetectionofvirulencefactorsofclostridioidesdifficilestrains AT murielehmig contributionofmalditofmassspectrometryandmachinelearningincludingdeeplearningtechniquesforthedetectionofvirulencefactorsofclostridioidesdifficilestrains AT valerielalande contributionofmalditofmassspectrometryandmachinelearningincludingdeeplearningtechniquesforthedetectionofvirulencefactorsofclostridioidesdifficilestrains AT nicolasveziris contributionofmalditofmassspectrometryandmachinelearningincludingdeeplearningtechniquesforthedetectionofvirulencefactorsofclostridioidesdifficilestrains AT alexandraaubry contributionofmalditofmassspectrometryandmachinelearningincludingdeeplearningtechniquesforthedetectionofvirulencefactorsofclostridioidesdifficilestrains AT fredericbarbut contributionofmalditofmassspectrometryandmachinelearningincludingdeeplearningtechniquesforthedetectionofvirulencefactorsofclostridioidesdifficilestrains AT catherineeckert contributionofmalditofmassspectrometryandmachinelearningincludingdeeplearningtechniquesforthedetectionofvirulencefactorsofclostridioidesdifficilestrains |
