Non-invasive giant panda pregnancy and pseudopregnancy biomonitoring by integrated metabolomics and steroidomics
Abstract Understanding the reproductive biology of giant pandas is crucial for their breeding success and conservation. Pregnancy monitoring, however, is challenging due to delayed implantation and obligatory pseudopregnancy, which limits the effectiveness of traditional immunoassays (IA). To remedy...
| الحاوية / القاعدة: | Scientific Reports |
|---|---|
| المؤلفون الرئيسيون: | , , , , , , , , , , , , , , , |
| التنسيق: | مقال |
| اللغة: | الإنجليزية |
| منشور في: |
Nature Portfolio
2025-10-01
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | https://doi.org/10.1038/s41598-025-19067-7 |
| _version_ | 1848760201936633856 |
|---|---|
| author | Tom Cools Kirsten S. Wilson Desheng Li Catherine Vancsok Baptiste Mulot Antoine Leclerc José Kok Marko Haapakoski Mads F. Bertelsen Florian Sicks Franziska Sutter Simon J. Girling Yingmin Zhou Rengui Li Lynn Vanhaecke Jella Wauters |
| author_facet | Tom Cools Kirsten S. Wilson Desheng Li Catherine Vancsok Baptiste Mulot Antoine Leclerc José Kok Marko Haapakoski Mads F. Bertelsen Florian Sicks Franziska Sutter Simon J. Girling Yingmin Zhou Rengui Li Lynn Vanhaecke Jella Wauters |
| author_sort | Tom Cools |
| collection | DOAJ |
| container_title | Scientific Reports |
| description | Abstract Understanding the reproductive biology of giant pandas is crucial for their breeding success and conservation. Pregnancy monitoring, however, is challenging due to delayed implantation and obligatory pseudopregnancy, which limits the effectiveness of traditional immunoassays (IA). To remedy this, we combined polar metabolomics and steroidomics to enable a comprehensive view of the urinary molecular composition across six different reproductive phases spanning six pregnant and seven pseudopregnant cycles. Statistical comparisons revealed 696 discriminative features, including 174 features in the early luteal stages, well before the current pregnancy diagnostic window. Pregnant and pseudopregnant cycles showed differences in amino acid, energy, and steroid metabolism before and after CL reactivation, with androgen levels being significantly elevated in pregnant females specifically, suggesting a role in embryo implantation. Interestingly, we detected only one existing IA target metabolite, but identified other discriminative metabolites that may underlie IA signal detection. Finally, we demonstrated that classification models comprising biomarker panels may improve (early) pregnancy diagnosis with accuracies ranging from 0.763 to 1.000 across reproductive phases. These findings offer possibilities for assigning new biomarkers and optimizing IA target selection, thereby enhancing pregnancy monitoring sensitivity and reliability while improving our understanding of giant panda reproductive biology to support conservation efforts. |
| format | Article |
| id | doaj-art-e8ed333f360548aebd9ea0e55df8c081 |
| institution | Directory of Open Access Journals |
| issn | 2045-2322 |
| language | English |
| publishDate | 2025-10-01 |
| publisher | Nature Portfolio |
| record_format | Article |
| spelling | doaj-art-e8ed333f360548aebd9ea0e55df8c0812025-10-12T11:26:32ZengNature PortfolioScientific Reports2045-23222025-10-0115111510.1038/s41598-025-19067-7Non-invasive giant panda pregnancy and pseudopregnancy biomonitoring by integrated metabolomics and steroidomicsTom Cools0Kirsten S. Wilson1Desheng Li2Catherine Vancsok3Baptiste Mulot4Antoine Leclerc5José Kok6Marko Haapakoski7Mads F. Bertelsen8Florian Sicks9Franziska Sutter10Simon J. Girling11Yingmin Zhou12Rengui Li13Lynn Vanhaecke14Jella Wauters15Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent UniversityInstitute of Regeneration and Repair, Biomolecular and Assay Core, University of EdinburghKey Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Centre for Giant Panda (CCRCGP)Pairi Daiza Foundation-Pairi DaizaZooParc de Beauval & Beauval NatureZooParc de Beauval & Beauval NatureOuwehands Dierenpark RhenenÄhtärin Eläinpuisto OYCopenhagen ZooBerlin ZooBerlin ZooRoyal Zoological Society of ScotlandKey Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Centre for Giant Panda (CCRCGP)Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Centre for Giant Panda (CCRCGP)Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent UniversityLaboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent UniversityAbstract Understanding the reproductive biology of giant pandas is crucial for their breeding success and conservation. Pregnancy monitoring, however, is challenging due to delayed implantation and obligatory pseudopregnancy, which limits the effectiveness of traditional immunoassays (IA). To remedy this, we combined polar metabolomics and steroidomics to enable a comprehensive view of the urinary molecular composition across six different reproductive phases spanning six pregnant and seven pseudopregnant cycles. Statistical comparisons revealed 696 discriminative features, including 174 features in the early luteal stages, well before the current pregnancy diagnostic window. Pregnant and pseudopregnant cycles showed differences in amino acid, energy, and steroid metabolism before and after CL reactivation, with androgen levels being significantly elevated in pregnant females specifically, suggesting a role in embryo implantation. Interestingly, we detected only one existing IA target metabolite, but identified other discriminative metabolites that may underlie IA signal detection. Finally, we demonstrated that classification models comprising biomarker panels may improve (early) pregnancy diagnosis with accuracies ranging from 0.763 to 1.000 across reproductive phases. These findings offer possibilities for assigning new biomarkers and optimizing IA target selection, thereby enhancing pregnancy monitoring sensitivity and reliability while improving our understanding of giant panda reproductive biology to support conservation efforts.https://doi.org/10.1038/s41598-025-19067-7Ailuropoda melanoleucaMetabolomicsSteroidomicsPregnancyEndocrine monitoringUHPLC-HRMS |
| spellingShingle | Tom Cools Kirsten S. Wilson Desheng Li Catherine Vancsok Baptiste Mulot Antoine Leclerc José Kok Marko Haapakoski Mads F. Bertelsen Florian Sicks Franziska Sutter Simon J. Girling Yingmin Zhou Rengui Li Lynn Vanhaecke Jella Wauters Non-invasive giant panda pregnancy and pseudopregnancy biomonitoring by integrated metabolomics and steroidomics Ailuropoda melanoleuca Metabolomics Steroidomics Pregnancy Endocrine monitoring UHPLC-HRMS |
| title | Non-invasive giant panda pregnancy and pseudopregnancy biomonitoring by integrated metabolomics and steroidomics |
| title_full | Non-invasive giant panda pregnancy and pseudopregnancy biomonitoring by integrated metabolomics and steroidomics |
| title_fullStr | Non-invasive giant panda pregnancy and pseudopregnancy biomonitoring by integrated metabolomics and steroidomics |
| title_full_unstemmed | Non-invasive giant panda pregnancy and pseudopregnancy biomonitoring by integrated metabolomics and steroidomics |
| title_short | Non-invasive giant panda pregnancy and pseudopregnancy biomonitoring by integrated metabolomics and steroidomics |
| title_sort | non invasive giant panda pregnancy and pseudopregnancy biomonitoring by integrated metabolomics and steroidomics |
| topic | Ailuropoda melanoleuca Metabolomics Steroidomics Pregnancy Endocrine monitoring UHPLC-HRMS |
| url | https://doi.org/10.1038/s41598-025-19067-7 |
| work_keys_str_mv | AT tomcools noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics AT kirstenswilson noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics AT deshengli noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics AT catherinevancsok noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics AT baptistemulot noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics AT antoineleclerc noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics AT josekok noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics AT markohaapakoski noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics AT madsfbertelsen noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics AT floriansicks noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics AT franziskasutter noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics AT simonjgirling noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics AT yingminzhou noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics AT renguili noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics AT lynnvanhaecke noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics AT jellawauters noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics |
