Non-invasive giant panda pregnancy and pseudopregnancy biomonitoring by integrated metabolomics and steroidomics

Abstract Understanding the reproductive biology of giant pandas is crucial for their breeding success and conservation. Pregnancy monitoring, however, is challenging due to delayed implantation and obligatory pseudopregnancy, which limits the effectiveness of traditional immunoassays (IA). To remedy...

وصف كامل

التفاصيل البيبلوغرافية
الحاوية / القاعدة:Scientific Reports
المؤلفون الرئيسيون: Tom Cools, Kirsten S. Wilson, Desheng Li, Catherine Vancsok, Baptiste Mulot, Antoine Leclerc, José Kok, Marko Haapakoski, Mads F. Bertelsen, Florian Sicks, Franziska Sutter, Simon J. Girling, Yingmin Zhou, Rengui Li, Lynn Vanhaecke, Jella Wauters
التنسيق: مقال
اللغة:الإنجليزية
منشور في: Nature Portfolio 2025-10-01
الموضوعات:
الوصول للمادة أونلاين:https://doi.org/10.1038/s41598-025-19067-7
_version_ 1848760201936633856
author Tom Cools
Kirsten S. Wilson
Desheng Li
Catherine Vancsok
Baptiste Mulot
Antoine Leclerc
José Kok
Marko Haapakoski
Mads F. Bertelsen
Florian Sicks
Franziska Sutter
Simon J. Girling
Yingmin Zhou
Rengui Li
Lynn Vanhaecke
Jella Wauters
author_facet Tom Cools
Kirsten S. Wilson
Desheng Li
Catherine Vancsok
Baptiste Mulot
Antoine Leclerc
José Kok
Marko Haapakoski
Mads F. Bertelsen
Florian Sicks
Franziska Sutter
Simon J. Girling
Yingmin Zhou
Rengui Li
Lynn Vanhaecke
Jella Wauters
author_sort Tom Cools
collection DOAJ
container_title Scientific Reports
description Abstract Understanding the reproductive biology of giant pandas is crucial for their breeding success and conservation. Pregnancy monitoring, however, is challenging due to delayed implantation and obligatory pseudopregnancy, which limits the effectiveness of traditional immunoassays (IA). To remedy this, we combined polar metabolomics and steroidomics to enable a comprehensive view of the urinary molecular composition across six different reproductive phases spanning six pregnant and seven pseudopregnant cycles. Statistical comparisons revealed 696 discriminative features, including 174 features in the early luteal stages, well before the current pregnancy diagnostic window. Pregnant and pseudopregnant cycles showed differences in amino acid, energy, and steroid metabolism before and after CL reactivation, with androgen levels being significantly elevated in pregnant females specifically, suggesting a role in embryo implantation. Interestingly, we detected only one existing IA target metabolite, but identified other discriminative metabolites that may underlie IA signal detection. Finally, we demonstrated that classification models comprising biomarker panels may improve (early) pregnancy diagnosis with accuracies ranging from 0.763 to 1.000 across reproductive phases. These findings offer possibilities for assigning new biomarkers and optimizing IA target selection, thereby enhancing pregnancy monitoring sensitivity and reliability while improving our understanding of giant panda reproductive biology to support conservation efforts.
format Article
id doaj-art-e8ed333f360548aebd9ea0e55df8c081
institution Directory of Open Access Journals
issn 2045-2322
language English
publishDate 2025-10-01
publisher Nature Portfolio
record_format Article
spelling doaj-art-e8ed333f360548aebd9ea0e55df8c0812025-10-12T11:26:32ZengNature PortfolioScientific Reports2045-23222025-10-0115111510.1038/s41598-025-19067-7Non-invasive giant panda pregnancy and pseudopregnancy biomonitoring by integrated metabolomics and steroidomicsTom Cools0Kirsten S. Wilson1Desheng Li2Catherine Vancsok3Baptiste Mulot4Antoine Leclerc5José Kok6Marko Haapakoski7Mads F. Bertelsen8Florian Sicks9Franziska Sutter10Simon J. Girling11Yingmin Zhou12Rengui Li13Lynn Vanhaecke14Jella Wauters15Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent UniversityInstitute of Regeneration and Repair, Biomolecular and Assay Core, University of EdinburghKey Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Centre for Giant Panda (CCRCGP)Pairi Daiza Foundation-Pairi DaizaZooParc de Beauval & Beauval NatureZooParc de Beauval & Beauval NatureOuwehands Dierenpark RhenenÄhtärin Eläinpuisto OYCopenhagen ZooBerlin ZooBerlin ZooRoyal Zoological Society of ScotlandKey Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Centre for Giant Panda (CCRCGP)Key Laboratory of SFGA on Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Centre for Giant Panda (CCRCGP)Laboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent UniversityLaboratory of Integrative Metabolomics, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent UniversityAbstract Understanding the reproductive biology of giant pandas is crucial for their breeding success and conservation. Pregnancy monitoring, however, is challenging due to delayed implantation and obligatory pseudopregnancy, which limits the effectiveness of traditional immunoassays (IA). To remedy this, we combined polar metabolomics and steroidomics to enable a comprehensive view of the urinary molecular composition across six different reproductive phases spanning six pregnant and seven pseudopregnant cycles. Statistical comparisons revealed 696 discriminative features, including 174 features in the early luteal stages, well before the current pregnancy diagnostic window. Pregnant and pseudopregnant cycles showed differences in amino acid, energy, and steroid metabolism before and after CL reactivation, with androgen levels being significantly elevated in pregnant females specifically, suggesting a role in embryo implantation. Interestingly, we detected only one existing IA target metabolite, but identified other discriminative metabolites that may underlie IA signal detection. Finally, we demonstrated that classification models comprising biomarker panels may improve (early) pregnancy diagnosis with accuracies ranging from 0.763 to 1.000 across reproductive phases. These findings offer possibilities for assigning new biomarkers and optimizing IA target selection, thereby enhancing pregnancy monitoring sensitivity and reliability while improving our understanding of giant panda reproductive biology to support conservation efforts.https://doi.org/10.1038/s41598-025-19067-7Ailuropoda melanoleucaMetabolomicsSteroidomicsPregnancyEndocrine monitoringUHPLC-HRMS
spellingShingle Tom Cools
Kirsten S. Wilson
Desheng Li
Catherine Vancsok
Baptiste Mulot
Antoine Leclerc
José Kok
Marko Haapakoski
Mads F. Bertelsen
Florian Sicks
Franziska Sutter
Simon J. Girling
Yingmin Zhou
Rengui Li
Lynn Vanhaecke
Jella Wauters
Non-invasive giant panda pregnancy and pseudopregnancy biomonitoring by integrated metabolomics and steroidomics
Ailuropoda melanoleuca
Metabolomics
Steroidomics
Pregnancy
Endocrine monitoring
UHPLC-HRMS
title Non-invasive giant panda pregnancy and pseudopregnancy biomonitoring by integrated metabolomics and steroidomics
title_full Non-invasive giant panda pregnancy and pseudopregnancy biomonitoring by integrated metabolomics and steroidomics
title_fullStr Non-invasive giant panda pregnancy and pseudopregnancy biomonitoring by integrated metabolomics and steroidomics
title_full_unstemmed Non-invasive giant panda pregnancy and pseudopregnancy biomonitoring by integrated metabolomics and steroidomics
title_short Non-invasive giant panda pregnancy and pseudopregnancy biomonitoring by integrated metabolomics and steroidomics
title_sort non invasive giant panda pregnancy and pseudopregnancy biomonitoring by integrated metabolomics and steroidomics
topic Ailuropoda melanoleuca
Metabolomics
Steroidomics
Pregnancy
Endocrine monitoring
UHPLC-HRMS
url https://doi.org/10.1038/s41598-025-19067-7
work_keys_str_mv AT tomcools noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics
AT kirstenswilson noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics
AT deshengli noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics
AT catherinevancsok noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics
AT baptistemulot noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics
AT antoineleclerc noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics
AT josekok noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics
AT markohaapakoski noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics
AT madsfbertelsen noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics
AT floriansicks noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics
AT franziskasutter noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics
AT simonjgirling noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics
AT yingminzhou noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics
AT renguili noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics
AT lynnvanhaecke noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics
AT jellawauters noninvasivegiantpandapregnancyandpseudopregnancybiomonitoringbyintegratedmetabolomicsandsteroidomics