HLAE-Net: A Hierarchical Lightweight Attention-Enhanced Strategy for Remote Sensing Scene Image Classification

Remote sensing scene image classification has extensive application scenarios in fields such as land use monitoring and environmental assessment. However, traditional methodologies based on convolutional neural networks (CNNs) face considerable challenges caused by uneven image quality, imbalanced s...

Full description

Bibliographic Details
Published in:Remote Sensing
Main Authors: Mingyuan Yang, Cuiping Shi, Kangning Tan, Haocheng Wu, Shenghan Wang, Liguo Wang
Format: Article
Language:English
Published: MDPI AG 2025-09-01
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/19/3279
Description
Summary:Remote sensing scene image classification has extensive application scenarios in fields such as land use monitoring and environmental assessment. However, traditional methodologies based on convolutional neural networks (CNNs) face considerable challenges caused by uneven image quality, imbalanced sample distribution, intra-class similarities and limited computing resources. To address such issues, this study proposes a hierarchical lightweight attention-enhanced network (HLAE-Net), which employs a hierarchical feature collaborative extraction (HFCE) strategy. By considering the differences in resolution and receptive field as well as the varying effectiveness of attention mechanisms across different network layers, the network uses different attention modules to progressively extract features from the images. This approach forms a complementary and enhanced feature chain among different layers, forming an efficient collaboration between various attention modules. In addition, an improved lightweight attention module group is proposed, including a lightweight dual coordinate spatial attention module (DCSAM), which captures spatial and channel information, as well as the lightweight multiscale spatial and channel attention module. These improved modules are incorporated into the featured average sampling (FAS) bottleneck and basic bottlenecks. The experiments were studied on four public standard datasets, and the results show that the proposed model outperforms several mainstream models from recent years in overall accuracy (OA). Particularly in terms of small training ratios, the proposed model shows competitive performance. Maintaining the parameter scale, it possesses both good classification ability and computational efficiency, providing a strong solution for the task of image classification.
ISSN:2072-4292