Perron conditions for exponential expansiveness of one-parameter semigroup

We present a new approach for the theorems of Perron type for exponential expansiveness of one-parameter semigroups in terms of<em> l^p(N, X)</em> spaces. We prove that an exponentially bounded semigroup is exponentially expansive if and only if the pair <em>(l^p (N, X), l^q(N, X))...

全面介紹

書目詳細資料
發表在:Le Matematiche
主要作者: Bogdan Sasu
格式: Article
語言:英语
出版: Università degli Studi di Catania 2003-05-01
在線閱讀:http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/183
_version_ 1852803338194649088
author Bogdan Sasu
author_facet Bogdan Sasu
author_sort Bogdan Sasu
collection DOAJ
container_title Le Matematiche
description We present a new approach for the theorems of Perron type for exponential expansiveness of one-parameter semigroups in terms of<em> l^p(N, X)</em> spaces. We prove that an exponentially bounded semigroup is exponentially expansive if and only if the pair <em>(l^p (N, X), l^q(N, X))</em> is completely admissible relative to a discrete equation associated to the semigroup, where<em> p, q ∈ [1, ∞), p ≥ q</em>. We apply our results in order to obtain very general characterizations for exponential expansiveness of <em>C_0</em>-semigroups in terms of the complete admissibility of the pair <em>(L^ p (R_+ , X), L^ q (R_+ , X)) </em>and for exponential dichotomy, respectively, in terms of the admissibility of the pair <em>(L^p(R_+,X),</em> <em>L^q(R_+,X))</em>.<br />
format Article
id doaj-art-e94e9c233a3e4b79abd0c4467db5394e
institution Directory of Open Access Journals
issn 0373-3505
2037-5298
language English
publishDate 2003-05-01
publisher Università degli Studi di Catania
record_format Article
spelling doaj-art-e94e9c233a3e4b79abd0c4467db5394e2025-08-19T20:39:04ZengUniversità degli Studi di CataniaLe Matematiche0373-35052037-52982003-05-01581101115161Perron conditions for exponential expansiveness of one-parameter semigroupBogdan SasuWe present a new approach for the theorems of Perron type for exponential expansiveness of one-parameter semigroups in terms of<em> l^p(N, X)</em> spaces. We prove that an exponentially bounded semigroup is exponentially expansive if and only if the pair <em>(l^p (N, X), l^q(N, X))</em> is completely admissible relative to a discrete equation associated to the semigroup, where<em> p, q ∈ [1, ∞), p ≥ q</em>. We apply our results in order to obtain very general characterizations for exponential expansiveness of <em>C_0</em>-semigroups in terms of the complete admissibility of the pair <em>(L^ p (R_+ , X), L^ q (R_+ , X)) </em>and for exponential dichotomy, respectively, in terms of the admissibility of the pair <em>(L^p(R_+,X),</em> <em>L^q(R_+,X))</em>.<br />http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/183
spellingShingle Bogdan Sasu
Perron conditions for exponential expansiveness of one-parameter semigroup
title Perron conditions for exponential expansiveness of one-parameter semigroup
title_full Perron conditions for exponential expansiveness of one-parameter semigroup
title_fullStr Perron conditions for exponential expansiveness of one-parameter semigroup
title_full_unstemmed Perron conditions for exponential expansiveness of one-parameter semigroup
title_short Perron conditions for exponential expansiveness of one-parameter semigroup
title_sort perron conditions for exponential expansiveness of one parameter semigroup
url http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/183
work_keys_str_mv AT bogdansasu perronconditionsforexponentialexpansivenessofoneparametersemigroup