Center and Quasi Center on Banach Normal Hyperalgebra
In this paper, we prove that every strongly distributive hyperalgebra is normal. Also, we prove that if X is a normed normal hyperalgebra with a propertyza◦x.zb◦y = zab◦xy and |λ| > ‖x‖, then (zλ◦e − x) is invertible. Moreover, we give a characterization of the center of a unital complex Banach n...
| الحاوية / القاعدة: | مجلة جامعة النجاح للأبحاث العلوم الطبيعية |
|---|---|
| المؤلفون الرئيسيون: | , |
| التنسيق: | مقال |
| اللغة: | الإنجليزية |
| منشور في: |
An-Najah National University
2021-12-01
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | https://journals.najah.edu/media/journals/full_texts/5_rr4QXWP.pdf |
| الملخص: | In this paper, we prove that every strongly distributive hyperalgebra is normal. Also, we prove
that if X is a normed normal hyperalgebra with a propertyza◦x.zb◦y = zab◦xy and |λ| > ‖x‖, then
(zλ◦e − x) is invertible. Moreover, we give a characterization of the center of a unital complex
Banach normal hyperalgebra with the same property. Finally, we define the quasi-center, σ-quasi
center and ρ-quasi center of Banach normal hyperalgebra as a generalization of the center and
study some basic properties and relations between them. |
|---|---|
| تدمد: | 1727-2114 2311-8865 |
