Center and Quasi Center on Banach Normal Hyperalgebra

In this paper, we prove that every strongly distributive hyperalgebra is normal. Also, we prove that if X is a normed normal hyperalgebra with a propertyza◦x.zb◦y = zab◦xy and |λ| > ‖x‖, then (zλ◦e − x) is invertible. Moreover, we give a characterization of the center of a unital complex Banach n...

وصف كامل

التفاصيل البيبلوغرافية
الحاوية / القاعدة:مجلة جامعة النجاح للأبحاث العلوم الطبيعية
المؤلفون الرئيسيون: ayman mizyed, As'ad Y. As'ad
التنسيق: مقال
اللغة:الإنجليزية
منشور في: An-Najah National University 2021-12-01
الموضوعات:
الوصول للمادة أونلاين:https://journals.najah.edu/media/journals/full_texts/5_rr4QXWP.pdf
الوصف
الملخص:In this paper, we prove that every strongly distributive hyperalgebra is normal. Also, we prove that if X is a normed normal hyperalgebra with a propertyza◦x.zb◦y = zab◦xy and |λ| > ‖x‖, then (zλ◦e − x) is invertible. Moreover, we give a characterization of the center of a unital complex Banach normal hyperalgebra with the same property. Finally, we define the quasi-center, σ-quasi center and ρ-quasi center of Banach normal hyperalgebra as a generalization of the center and study some basic properties and relations between them.
تدمد:1727-2114
2311-8865