Effects of greenhouse gas emissions timing on alternative biomass and fossil energy sources for district heating

District heating (DH) systems can improve energy efficiency, reduce greenhouse gas (GHG) emissions, and be a cost-effective residential space heating alternative over conventional decentralized heating. This study uses radiative forcing (RF), a time-sensitive life cycle assessment metric, to evaluat...

Full description

Bibliographic Details
Main Authors: Billen, P. (Author), Björnebo, L. (Author), Kar, S. (Author), Katz, B. (Author), Spatari, S. (Author), Volk, T.A (Author), Yang, S. (Author)
Format: Article
Language:English
Published: John Wiley and Sons Inc 2021
Subjects:
CCS
LCA
Online Access:View Fulltext in Publisher
LEADER 03679nam a2200709Ia 4500
001 10.1111-gcbb.12890
008 220427s2021 CNT 000 0 und d
020 |a 17571693 (ISSN) 
245 1 0 |a Effects of greenhouse gas emissions timing on alternative biomass and fossil energy sources for district heating 
260 0 |b John Wiley and Sons Inc  |c 2021 
856 |z View Fulltext in Publisher  |u https://doi.org/10.1111/gcbb.12890 
520 3 |a District heating (DH) systems can improve energy efficiency, reduce greenhouse gas (GHG) emissions, and be a cost-effective residential space heating alternative over conventional decentralized heating. This study uses radiative forcing (RF), a time-sensitive life cycle assessment metric, to evaluate space heating alternatives. We compare forest residue and willow biomass resources and natural gas as fuel sources against decentralized heating using heating oil. The comparison is performed for selected locations in the Northeastern United States over a 30-year production timeline and 100 observation years. The natural gas and willow scenarios are compared with scenarios where available forest residue is unused and adds a penalty of GHG emissions due to microbial decay. When forest residues are available, their use is recommended before considering willow production. Investment in bioenergy-based DH with carbon capture and storage and natural-gas-based DH with carbon capture and storage (CCS) technology is considered to assess their influence on RF. Its implementation further improves the net carbon mitigation potential of DH despite the carbon and energy cost of CCS infrastructure. Soil carbon sequestration from willow production reduces RF overall, specifically when grown on land converted from cropland to pasture, hay, and grassland. The study places initial GHG emissions spikes from infrastructure and land-use change into a temporal framework and shows a payback within the first 5 years of operation for DH with forest residues and willow. © 2021 The Authors. GCB Bioenergy published by John Wiley & Sons Ltd. 
650 0 4 |a Atmospheric radiation 
650 0 4 |a BECCS 
650 0 4 |a bioenergy crops 
650 0 4 |a Biomass 
650 0 4 |a biomass power 
650 0 4 |a Carbon capture 
650 0 4 |a Carbon capture and storages (CCS) 
650 0 4 |a Carbon mitigation 
650 0 4 |a carbon sequestration 
650 0 4 |a CCS 
650 0 4 |a Cost effectiveness 
650 0 4 |a Decentralized heating 
650 0 4 |a district heating 
650 0 4 |a District heating 
650 0 4 |a District heating system 
650 0 4 |a Elliptio dilatata 
650 0 4 |a energy crop 
650 0 4 |a Energy efficiency 
650 0 4 |a Forestry 
650 0 4 |a Fossil energy sources 
650 0 4 |a fossil fuel 
650 0 4 |a Gas emissions 
650 0 4 |a greenhouse gas 
650 0 4 |a Greenhouse gases 
650 0 4 |a heating 
650 0 4 |a Investments 
650 0 4 |a Land use 
650 0 4 |a LCA 
650 0 4 |a Life cycle 
650 0 4 |a life cycle analysis 
650 0 4 |a Life Cycle Assessment (LCA) 
650 0 4 |a Natural gas 
650 0 4 |a Natural gas deposits 
650 0 4 |a radiative forcing 
650 0 4 |a radiative forcing 
650 0 4 |a Radiative forcings 
650 0 4 |a soil carbon 
650 0 4 |a Soil carbon sequestration 
650 0 4 |a temporal analysis 
650 0 4 |a temporal GHG emissions 
650 0 4 |a Timing circuits 
650 0 4 |a United States 
700 1 |a Billen, P.  |e author 
700 1 |a Björnebo, L.  |e author 
700 1 |a Kar, S.  |e author 
700 1 |a Katz, B.  |e author 
700 1 |a Spatari, S.  |e author 
700 1 |a Volk, T.A.  |e author 
700 1 |a Yang, S.  |e author 
773 |t GCB Bioenergy