Predicting metabolic fluxes from omics data via machine learning: Moving from knowledge-driven towards data-driven approaches

The accurate prediction of phenotypes in microorganisms is a main challenge for systems biology. Genome-scale models (GEMs) are a widely used mathematical formalism for predicting metabolic fluxes using constraint-based modeling methods such as flux balance analysis (FBA). However, they require prio...

詳細記述

書誌詳細
出版年:Computational and Structural Biotechnology Journal
主要な著者: Daniel M. Gonçalves, Rui Henriques, Rafael S. Costa
フォーマット: 論文
言語:英語
出版事項: Elsevier 2023-01-01
主題:
オンライン・アクセス:http://www.sciencedirect.com/science/article/pii/S2001037023003586