A new theorem on quadratic residues modulo primes
Let $p>3$ be a prime, and let $(\frac{\cdot }{p})$ be the Legendre symbol. Let $b\in \mathbb{Z}$ and $\varepsilon \in \lbrace \pm 1\rbrace $. We mainly prove that \[ \left|\left\lbrace N_p(a,b):\ 1\lbrace ax^2+b\rbrace _p$, and $\lbrace m\rbrace _p$ with $m\in \mathbb{Z}$ is the least nonnegative...
| Published in: | Comptes Rendus. Mathématique |
|---|---|
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Académie des sciences
2022-09-01
|
| Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.371/ |
