A new theorem on quadratic residues modulo primes

Let $p>3$ be a prime, and let $(\frac{\cdot }{p})$ be the Legendre symbol. Let $b\in \mathbb{Z}$ and $\varepsilon \in \lbrace \pm 1\rbrace $. We mainly prove that \[ \left|\left\lbrace N_p(a,b):\ 1\lbrace ax^2+b\rbrace _p$, and $\lbrace m\rbrace _p$ with $m\in \mathbb{Z}$ is the least nonnegative...

Full description

Bibliographic Details
Published in:Comptes Rendus. Mathématique
Main Authors: Hou, Qing-Hu, Pan, Hao, Sun, Zhi-Wei
Format: Article
Language:English
Published: Académie des sciences 2022-09-01
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.371/
_version_ 1850088080645554176
author Hou, Qing-Hu
Pan, Hao
Sun, Zhi-Wei
author_facet Hou, Qing-Hu
Pan, Hao
Sun, Zhi-Wei
author_sort Hou, Qing-Hu
collection DOAJ
container_title Comptes Rendus. Mathématique
description Let $p>3$ be a prime, and let $(\frac{\cdot }{p})$ be the Legendre symbol. Let $b\in \mathbb{Z}$ and $\varepsilon \in \lbrace \pm 1\rbrace $. We mainly prove that \[ \left|\left\lbrace N_p(a,b):\ 1\lbrace ax^2+b\rbrace _p$, and $\lbrace m\rbrace _p$ with $m\in \mathbb{Z}$ is the least nonnegative residue of $m$ modulo $p$.
format Article
id doaj-art-0c78ebbdb4e14668a47fe1fefba3b0ca
institution Directory of Open Access Journals
issn 1778-3569
language English
publishDate 2022-09-01
publisher Académie des sciences
record_format Article
spelling doaj-art-0c78ebbdb4e14668a47fe1fefba3b0ca2025-08-20T00:10:05ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692022-09-01360G91065106910.5802/crmath.37110.5802/crmath.371A new theorem on quadratic residues modulo primesHou, Qing-Hu0Pan, Hao1Sun, Zhi-Wei2School of Mathematics, Tianjin University, Tianjin 300350, People’s Republic of ChinaSchool of Applied Mathematics, Nanjing University of Finance and Economics, Nanjing 210046, People’s Republic of ChinaDepartment of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of ChinaLet $p>3$ be a prime, and let $(\frac{\cdot }{p})$ be the Legendre symbol. Let $b\in \mathbb{Z}$ and $\varepsilon \in \lbrace \pm 1\rbrace $. We mainly prove that \[ \left|\left\lbrace N_p(a,b):\ 1\lbrace ax^2+b\rbrace _p$, and $\lbrace m\rbrace _p$ with $m\in \mathbb{Z}$ is the least nonnegative residue of $m$ modulo $p$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.371/
spellingShingle Hou, Qing-Hu
Pan, Hao
Sun, Zhi-Wei
A new theorem on quadratic residues modulo primes
title A new theorem on quadratic residues modulo primes
title_full A new theorem on quadratic residues modulo primes
title_fullStr A new theorem on quadratic residues modulo primes
title_full_unstemmed A new theorem on quadratic residues modulo primes
title_short A new theorem on quadratic residues modulo primes
title_sort new theorem on quadratic residues modulo primes
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.371/
work_keys_str_mv AT houqinghu anewtheoremonquadraticresiduesmoduloprimes
AT panhao anewtheoremonquadraticresiduesmoduloprimes
AT sunzhiwei anewtheoremonquadraticresiduesmoduloprimes
AT houqinghu newtheoremonquadraticresiduesmoduloprimes
AT panhao newtheoremonquadraticresiduesmoduloprimes
AT sunzhiwei newtheoremonquadraticresiduesmoduloprimes