A new theorem on quadratic residues modulo primes

Let $p>3$ be a prime, and let $(\frac{\cdot }{p})$ be the Legendre symbol. Let $b\in \mathbb{Z}$ and $\varepsilon \in \lbrace \pm 1\rbrace $. We mainly prove that \[ \left|\left\lbrace N_p(a,b):\ 1\lbrace ax^2+b\rbrace _p$, and $\lbrace m\rbrace _p$ with $m\in \mathbb{Z}$ is the least nonnegative...

Full description

Bibliographic Details
Published in:Comptes Rendus. Mathématique
Main Authors: Hou, Qing-Hu, Pan, Hao, Sun, Zhi-Wei
Format: Article
Language:English
Published: Académie des sciences 2022-09-01
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.371/