Orthogonal LoxPsym sites allow multiplexed site-specific recombination in prokaryotic and eukaryotic hosts
Abstract Site-specific recombinases such as the Cre-LoxP system are routinely used for genome engineering in both prokaryotes and eukaryotes. Importantly, recombinases complement the CRISPR-Cas toolbox and provide the additional benefit of high-efficiency DNA editing without generating toxic DNA dou...
| Published in: | Nature Communications |
|---|---|
| Main Authors: | , , , , , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2024-02-01
|
| Online Access: | https://doi.org/10.1038/s41467-024-44996-8 |
| _version_ | 1850011066547830784 |
|---|---|
| author | Charlotte Cautereels Jolien Smets Jonas De Saeger Lloyd Cool Yanmei Zhu Anna Zimmermann Jan Steensels Anton Gorkovskiy Thomas B. Jacobs Kevin J. Verstrepen |
| author_facet | Charlotte Cautereels Jolien Smets Jonas De Saeger Lloyd Cool Yanmei Zhu Anna Zimmermann Jan Steensels Anton Gorkovskiy Thomas B. Jacobs Kevin J. Verstrepen |
| author_sort | Charlotte Cautereels |
| collection | DOAJ |
| container_title | Nature Communications |
| description | Abstract Site-specific recombinases such as the Cre-LoxP system are routinely used for genome engineering in both prokaryotes and eukaryotes. Importantly, recombinases complement the CRISPR-Cas toolbox and provide the additional benefit of high-efficiency DNA editing without generating toxic DNA double-strand breaks, allowing multiple recombination events at the same time. However, only a handful of independent, orthogonal recombination systems are available, limiting their use in more complex applications that require multiple specific recombination events, such as metabolic engineering and genetic circuits. To address this shortcoming, we develop 63 symmetrical LoxP variants and test 1192 pairwise combinations to determine their cross-reactivity and specificity upon Cre activation. Ultimately, we establish a set of 16 orthogonal LoxPsym variants and demonstrate their use for multiplexed genome engineering in both prokaryotes (E. coli) and eukaryotes (S. cerevisiae and Z. mays). Together, this work yields a significant expansion of the Cre-LoxP toolbox for genome editing, metabolic engineering and other controlled recombination events, and provides insights into the Cre-LoxP recombination process. |
| format | Article |
| id | doaj-art-10f52b4d37ae408a90cf7fc42e8a0d62 |
| institution | Directory of Open Access Journals |
| issn | 2041-1723 |
| language | English |
| publishDate | 2024-02-01 |
| publisher | Nature Portfolio |
| record_format | Article |
| spelling | doaj-art-10f52b4d37ae408a90cf7fc42e8a0d622025-08-20T00:44:10ZengNature PortfolioNature Communications2041-17232024-02-0115111510.1038/s41467-024-44996-8Orthogonal LoxPsym sites allow multiplexed site-specific recombination in prokaryotic and eukaryotic hostsCharlotte Cautereels0Jolien Smets1Jonas De Saeger2Lloyd Cool3Yanmei Zhu4Anna Zimmermann5Jan Steensels6Anton Gorkovskiy7Thomas B. Jacobs8Kevin J. Verstrepen9VIB Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyVIB Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyDepartment of Plant Biotechnology and Bioinformatics, Ghent UniversityVIB Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyVIB Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyVIB Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyVIB Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyVIB Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyDepartment of Plant Biotechnology and Bioinformatics, Ghent UniversityVIB Laboratory for Systems Biology, VIB-KU Leuven Center for MicrobiologyAbstract Site-specific recombinases such as the Cre-LoxP system are routinely used for genome engineering in both prokaryotes and eukaryotes. Importantly, recombinases complement the CRISPR-Cas toolbox and provide the additional benefit of high-efficiency DNA editing without generating toxic DNA double-strand breaks, allowing multiple recombination events at the same time. However, only a handful of independent, orthogonal recombination systems are available, limiting their use in more complex applications that require multiple specific recombination events, such as metabolic engineering and genetic circuits. To address this shortcoming, we develop 63 symmetrical LoxP variants and test 1192 pairwise combinations to determine their cross-reactivity and specificity upon Cre activation. Ultimately, we establish a set of 16 orthogonal LoxPsym variants and demonstrate their use for multiplexed genome engineering in both prokaryotes (E. coli) and eukaryotes (S. cerevisiae and Z. mays). Together, this work yields a significant expansion of the Cre-LoxP toolbox for genome editing, metabolic engineering and other controlled recombination events, and provides insights into the Cre-LoxP recombination process.https://doi.org/10.1038/s41467-024-44996-8 |
| spellingShingle | Charlotte Cautereels Jolien Smets Jonas De Saeger Lloyd Cool Yanmei Zhu Anna Zimmermann Jan Steensels Anton Gorkovskiy Thomas B. Jacobs Kevin J. Verstrepen Orthogonal LoxPsym sites allow multiplexed site-specific recombination in prokaryotic and eukaryotic hosts |
| title | Orthogonal LoxPsym sites allow multiplexed site-specific recombination in prokaryotic and eukaryotic hosts |
| title_full | Orthogonal LoxPsym sites allow multiplexed site-specific recombination in prokaryotic and eukaryotic hosts |
| title_fullStr | Orthogonal LoxPsym sites allow multiplexed site-specific recombination in prokaryotic and eukaryotic hosts |
| title_full_unstemmed | Orthogonal LoxPsym sites allow multiplexed site-specific recombination in prokaryotic and eukaryotic hosts |
| title_short | Orthogonal LoxPsym sites allow multiplexed site-specific recombination in prokaryotic and eukaryotic hosts |
| title_sort | orthogonal loxpsym sites allow multiplexed site specific recombination in prokaryotic and eukaryotic hosts |
| url | https://doi.org/10.1038/s41467-024-44996-8 |
| work_keys_str_mv | AT charlottecautereels orthogonalloxpsymsitesallowmultiplexedsitespecificrecombinationinprokaryoticandeukaryotichosts AT joliensmets orthogonalloxpsymsitesallowmultiplexedsitespecificrecombinationinprokaryoticandeukaryotichosts AT jonasdesaeger orthogonalloxpsymsitesallowmultiplexedsitespecificrecombinationinprokaryoticandeukaryotichosts AT lloydcool orthogonalloxpsymsitesallowmultiplexedsitespecificrecombinationinprokaryoticandeukaryotichosts AT yanmeizhu orthogonalloxpsymsitesallowmultiplexedsitespecificrecombinationinprokaryoticandeukaryotichosts AT annazimmermann orthogonalloxpsymsitesallowmultiplexedsitespecificrecombinationinprokaryoticandeukaryotichosts AT jansteensels orthogonalloxpsymsitesallowmultiplexedsitespecificrecombinationinprokaryoticandeukaryotichosts AT antongorkovskiy orthogonalloxpsymsitesallowmultiplexedsitespecificrecombinationinprokaryoticandeukaryotichosts AT thomasbjacobs orthogonalloxpsymsitesallowmultiplexedsitespecificrecombinationinprokaryoticandeukaryotichosts AT kevinjverstrepen orthogonalloxpsymsitesallowmultiplexedsitespecificrecombinationinprokaryoticandeukaryotichosts |
