Pathologist-like explainable AI for interpretable Gleason grading in prostate cancer

Abstract The aggressiveness of prostate cancer is primarily assessed from histopathological data using the Gleason scoring system. Conventional artificial intelligence (AI) approaches can predict Gleason scores, but often lack explainability, which may limit clinical acceptance. Here, we present an...

Full description

Bibliographic Details
Published in:Nature Communications
Main Authors: Gesa Mittmann, Sara Laiouar-Pedari, Hendrik A. Mehrtens, Sarah Haggenmüller, Tabea-Clara Bucher, Tirtha Chanda, Nadine T. Gaisa, Mathias Wagner, Gilbert Georg Klamminger, Tilman T. Rau, Christina Neppl, Eva Maria Compérat, Andreas Gocht, Monika Haemmerle, Niels J. Rupp, Jula Westhoff, Irene Krücken, Maximilian Seidl, Christian M. Schürch, Marcus Bauer, Wiebke Solass, Yu Chun Tam, Florian Weber, Rainer Grobholz, Jaroslaw Augustyniak, Thomas Kalinski, Christian Hörner, Kirsten D. Mertz, Constanze Döring, Andreas Erbersdobler, Gabriele Deubler, Felix Bremmer, Ulrich Sommer, Michael Brodhun, Jon Griffin, Maria Sarah L. Lenon, Kiril Trpkov, Liang Cheng, Fei Chen, Angelique Levi, Guoping Cai, Tri Q. Nguyen, Ali Amin, Alessia Cimadamore, Ahmed Shabaik, Varsha Manucha, Nazeel Ahmad, Nidia Messias, Francesca Sanguedolce, Diana Taheri, Ezra Baraban, Liwei Jia, Rajal B. Shah, Farshid Siadat, Nicole Swarbrick, Kyung Park, Oudai Hassan, Siamak Sakhaie, Michelle R. Downes, Hiroshi Miyamoto, Sean R. Williamson, Tim Holland-Letz, Christoph Wies, Carolin V. Schneider, Jakob Nikolas Kather, Yuri Tolkach, Titus J. Brinker
Format: Article
Language:English
Published: Nature Portfolio 2025-10-01
Online Access:https://doi.org/10.1038/s41467-025-64712-4