Pathologist-like explainable AI for interpretable Gleason grading in prostate cancer
Abstract The aggressiveness of prostate cancer is primarily assessed from histopathological data using the Gleason scoring system. Conventional artificial intelligence (AI) approaches can predict Gleason scores, but often lack explainability, which may limit clinical acceptance. Here, we present an...
| Published in: | Nature Communications |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-10-01
|
| Online Access: | https://doi.org/10.1038/s41467-025-64712-4 |
