Identifying Robust Radiomics Features for Lung Cancer by Using In-Vivo and Phantom Lung Lesions
We propose a novel framework for determining radiomics feature robustness by considering the effects of both biological and noise signals. This framework is preliminarily tested in a study predicting the epidermal growth factor receptor (EGFR) mutation status in non-small cell lung cancer (NSCLC) pa...
| 出版年: | Tomography |
|---|---|
| 主要な著者: | , , , , , , , |
| フォーマット: | 論文 |
| 言語: | 英語 |
| 出版事項: |
MDPI AG
2021-02-01
|
| 主題: | |
| オンライン・アクセス: | https://www.mdpi.com/2379-139X/7/1/5 |
