Tree-Based Forecasting of Day-Ahead Solar Power Generation from Granular Meteorological Features
Accurate forecasts for day-ahead photovoltaic (PV) power generation are crucial to support a high PV penetration rate in the local electricity grid and to assure stability in the grid. We use state-of-the-art tree-based machine learning methods to produce such forecasts and, unlike previous studies,...
| 出版年: | Data Science in Science |
|---|---|
| 主要な著者: | , , , |
| フォーマット: | 論文 |
| 言語: | 英語 |
| 出版事項: |
Taylor & Francis Group
2024-12-01
|
| 主題: | |
| オンライン・アクセス: | https://www.tandfonline.com/doi/10.1080/26941899.2024.2426786 |
