FS-SVM: A Synergistic Approach to High-Dimensional Feature Selection
Supervised classification in high-dimensional gene expression datasets is frequently used in bio-informatics studies. Feature selection plays an important role in such type of classification problems to avoid over-fitting and to develop a more reliable classifier for the problem at hand. This paper...
| 出版年: | IEEE Access |
|---|---|
| 主要な著者: | , , , , , |
| フォーマット: | 論文 |
| 言語: | 英語 |
| 出版事項: |
IEEE
2025-01-01
|
| 主題: | |
| オンライン・アクセス: | https://ieeexplore.ieee.org/document/11104109/ |
