Data-Driven Prediction of Unsteady Vortex Phenomena in a Conical Diffuser
The application of machine learning to solve engineering problems is in extremely high demand. This article proposes a tool that employs machine learning algorithms for predicting the frequency response of an unsteady vortex phenomenon, the precessing vortex core (PVC), occurring in a conical diffus...
| 出版年: | Energies |
|---|---|
| 主要な著者: | , , , , , |
| フォーマット: | 論文 |
| 言語: | 英語 |
| 出版事項: |
MDPI AG
2023-02-01
|
| 主題: | |
| オンライン・アクセス: | https://www.mdpi.com/1996-1073/16/5/2108 |
