Data-Driven Prediction of Unsteady Vortex Phenomena in a Conical Diffuser

The application of machine learning to solve engineering problems is in extremely high demand. This article proposes a tool that employs machine learning algorithms for predicting the frequency response of an unsteady vortex phenomenon, the precessing vortex core (PVC), occurring in a conical diffus...

詳細記述

書誌詳細
出版年:Energies
主要な著者: Sergey Skripkin, Daniil Suslov, Ivan Plokhikh, Mikhail Tsoy, Evgeny Gorelikov, Ivan Litvinov
フォーマット: 論文
言語:英語
出版事項: MDPI AG 2023-02-01
主題:
オンライン・アクセス:https://www.mdpi.com/1996-1073/16/5/2108