Validation and Optimization of an Image-Based Screening Method Applied to the Study of Neuronal Processes on Nanogrooves
Research on neuronal differentiation and neuronal network guidance induced through nanotopographical cues generates large datasets, and therefore the analysis of such data can be aided by automatable, unbiased image screening tools. To link such tools, we present an image-based screening method to e...
| Published in: | Frontiers in Cellular Neuroscience |
|---|---|
| Main Authors: | , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Frontiers Media S.A.
2018-11-01
|
| Subjects: | |
| Online Access: | https://www.frontiersin.org/article/10.3389/fncel.2018.00415/full |
| _version_ | 1852767117590396928 |
|---|---|
| author | Alex J. Bastiaens Sijia Xie Dana A. M. Mustafa Jean-Philippe Frimat Jaap M. J. den Toonder Regina Luttge |
| author_facet | Alex J. Bastiaens Sijia Xie Dana A. M. Mustafa Jean-Philippe Frimat Jaap M. J. den Toonder Regina Luttge |
| author_sort | Alex J. Bastiaens |
| collection | DOAJ |
| container_title | Frontiers in Cellular Neuroscience |
| description | Research on neuronal differentiation and neuronal network guidance induced through nanotopographical cues generates large datasets, and therefore the analysis of such data can be aided by automatable, unbiased image screening tools. To link such tools, we present an image-based screening method to evaluate the influence of nanogroove pattern dimensions on neuronal differentiation. This new method consists of combining neuronal feature detection software, here HCA-Vision, and a Frangi vesselness algorithm to calculate neurite alignment values and quantify morphological aspects of neurons, which are measured via neurite length, neuronal polarity, and neurite branching, for differentiated SH-SY5Y cells cultured on nanogrooved polydimethylsiloxane (PDMS) patterns in the 200–2000 nm range. The applicability of this method is confirmed by our results, which find that the level of alignment is dependent on nanogroove dimensions. Furthermore, the screening method reveals that differentiation and alignment are correlated. In particular, patterns with groove widths >200 nm and with a low ridge width to pattern period ratio have a quantifiable influence on alignment, neurite length, and polarity. In summary, the novel combination of software that forms a base for this statistical analysis method demonstrates good potential for evaluating tissue microarchitecture, which depends on subtle design variation in substrate topography. Using the screening method, we obtained automated and sensitive quantified readouts from large datasets. |
| format | Article |
| id | doaj-art-2e8caa9a5c2d454ca09f85e024b17ea7 |
| institution | Directory of Open Access Journals |
| issn | 1662-5102 |
| language | English |
| publishDate | 2018-11-01 |
| publisher | Frontiers Media S.A. |
| record_format | Article |
| spelling | doaj-art-2e8caa9a5c2d454ca09f85e024b17ea72025-08-19T20:53:19ZengFrontiers Media S.A.Frontiers in Cellular Neuroscience1662-51022018-11-011210.3389/fncel.2018.00415333190Validation and Optimization of an Image-Based Screening Method Applied to the Study of Neuronal Processes on NanogroovesAlex J. Bastiaens0Sijia Xie1Dana A. M. Mustafa2Jean-Philippe Frimat3Jaap M. J. den Toonder4Regina Luttge5Department of Mechanical Engineering, Microsystems Group and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, NetherlandsMESA+ Institute for Nanotechnology, University of Twente, Enschede, NetherlandsDepartment of Mechanical Engineering, Microsystems Group and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, NetherlandsDepartment of Mechanical Engineering, Microsystems Group and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, NetherlandsDepartment of Mechanical Engineering, Microsystems Group and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, NetherlandsDepartment of Mechanical Engineering, Microsystems Group and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, NetherlandsResearch on neuronal differentiation and neuronal network guidance induced through nanotopographical cues generates large datasets, and therefore the analysis of such data can be aided by automatable, unbiased image screening tools. To link such tools, we present an image-based screening method to evaluate the influence of nanogroove pattern dimensions on neuronal differentiation. This new method consists of combining neuronal feature detection software, here HCA-Vision, and a Frangi vesselness algorithm to calculate neurite alignment values and quantify morphological aspects of neurons, which are measured via neurite length, neuronal polarity, and neurite branching, for differentiated SH-SY5Y cells cultured on nanogrooved polydimethylsiloxane (PDMS) patterns in the 200–2000 nm range. The applicability of this method is confirmed by our results, which find that the level of alignment is dependent on nanogroove dimensions. Furthermore, the screening method reveals that differentiation and alignment are correlated. In particular, patterns with groove widths >200 nm and with a low ridge width to pattern period ratio have a quantifiable influence on alignment, neurite length, and polarity. In summary, the novel combination of software that forms a base for this statistical analysis method demonstrates good potential for evaluating tissue microarchitecture, which depends on subtle design variation in substrate topography. Using the screening method, we obtained automated and sensitive quantified readouts from large datasets.https://www.frontiersin.org/article/10.3389/fncel.2018.00415/fullSH-SY5Y cellsnanogroovesneuronal differentiationneuronal developmentneurite developmenthigh-content screening |
| spellingShingle | Alex J. Bastiaens Sijia Xie Dana A. M. Mustafa Jean-Philippe Frimat Jaap M. J. den Toonder Regina Luttge Validation and Optimization of an Image-Based Screening Method Applied to the Study of Neuronal Processes on Nanogrooves SH-SY5Y cells nanogrooves neuronal differentiation neuronal development neurite development high-content screening |
| title | Validation and Optimization of an Image-Based Screening Method Applied to the Study of Neuronal Processes on Nanogrooves |
| title_full | Validation and Optimization of an Image-Based Screening Method Applied to the Study of Neuronal Processes on Nanogrooves |
| title_fullStr | Validation and Optimization of an Image-Based Screening Method Applied to the Study of Neuronal Processes on Nanogrooves |
| title_full_unstemmed | Validation and Optimization of an Image-Based Screening Method Applied to the Study of Neuronal Processes on Nanogrooves |
| title_short | Validation and Optimization of an Image-Based Screening Method Applied to the Study of Neuronal Processes on Nanogrooves |
| title_sort | validation and optimization of an image based screening method applied to the study of neuronal processes on nanogrooves |
| topic | SH-SY5Y cells nanogrooves neuronal differentiation neuronal development neurite development high-content screening |
| url | https://www.frontiersin.org/article/10.3389/fncel.2018.00415/full |
| work_keys_str_mv | AT alexjbastiaens validationandoptimizationofanimagebasedscreeningmethodappliedtothestudyofneuronalprocessesonnanogrooves AT sijiaxie validationandoptimizationofanimagebasedscreeningmethodappliedtothestudyofneuronalprocessesonnanogrooves AT danaammustafa validationandoptimizationofanimagebasedscreeningmethodappliedtothestudyofneuronalprocessesonnanogrooves AT jeanphilippefrimat validationandoptimizationofanimagebasedscreeningmethodappliedtothestudyofneuronalprocessesonnanogrooves AT jaapmjdentoonder validationandoptimizationofanimagebasedscreeningmethodappliedtothestudyofneuronalprocessesonnanogrooves AT reginaluttge validationandoptimizationofanimagebasedscreeningmethodappliedtothestudyofneuronalprocessesonnanogrooves |
