Curves in low dimensional projective spaces with the lowest ranks
Let $X\subset \PP^r$ be an integral and non-degenerate curve. For each $q\in \PP^r$ the $X$-rank $r_X(q)$ of $q$ is the minimal number of points of $X$ spanning $q$. A general point of $\PP^r$ has $X$-rank $\lceil (r+1)/2\rceil$. For $r=3$ (resp. $r=4$) we construct many smooth curves such that $r_X...
| 發表在: | Cubo |
|---|---|
| 主要作者: | |
| 格式: | Article |
| 語言: | 英语 |
| 出版: |
Universidad de La Frontera
2020-12-01
|
| 主題: | |
| 在線閱讀: | http://revistas.ufro.cl/ojs/index.php/cubo/article/view/2471/2028 |
