Comparison of autoencoder architectures for fault detection in industrial processes
Fault detection constitutes a fundamental task for predictive maintenance, requiring mathematical models that can be conveniently provided by data-driven techniques. Autoencoders are a particular type of unsupervised Artificial Neural Networks that can be suitable for fault detection applications. D...
| 出版年: | Digital Chemical Engineering |
|---|---|
| 主要な著者: | , , , , , , , |
| フォーマット: | 論文 |
| 言語: | 英語 |
| 出版事項: |
Elsevier
2024-09-01
|
| 主題: | |
| オンライン・アクセス: | http://www.sciencedirect.com/science/article/pii/S2772508124000243 |
