Comparison of autoencoder architectures for fault detection in industrial processes

Fault detection constitutes a fundamental task for predictive maintenance, requiring mathematical models that can be conveniently provided by data-driven techniques. Autoencoders are a particular type of unsupervised Artificial Neural Networks that can be suitable for fault detection applications. D...

詳細記述

書誌詳細
出版年:Digital Chemical Engineering
主要な著者: Deris Eduardo Spina, Luiz Felipe de O. Campos, Wallthynay F. de Arruda, Afrânio Melo, Marcelo F. de S. Alves, Gildeir Lima Rabello, Thiago K. Anzai, José Carlos Pinto
フォーマット: 論文
言語:英語
出版事項: Elsevier 2024-09-01
主題:
オンライン・アクセス:http://www.sciencedirect.com/science/article/pii/S2772508124000243