Federated Reinforcement Learning-Based Dynamic Resource Allocation and Task Scheduling in Edge for IoT Applications

Using Google cluster traces, the research presents a task offloading algorithm and a hybrid forecasting model that unites Bidirectional Long Short-Term Memory (BiLSTM) with Gated Recurrent Unit (GRU) layers along an attention mechanism. This model predicts resource usage for flexible task scheduling...

詳細記述

書誌詳細
出版年:Sensors
主要な著者: Saroj Mali, Feng Zeng, Deepak Adhikari, Inam Ullah, Mahmoud Ahmad Al-Khasawneh, Osama Alfarraj, Fahad Alblehai
フォーマット: 論文
言語:英語
出版事項: MDPI AG 2025-03-01
主題:
オンライン・アクセス:https://www.mdpi.com/1424-8220/25/7/2197