Penalized landmark supermodels (penLM) for dynamic prediction for time-to-event outcomes in high-dimensional data

Abstract Background To effectively monitor long-term outcomes among cancer patients, it is critical to accurately assess patients’ dynamic prognosis, which often involves utilizing multiple data sources (e.g., tumor registries, treatment histories, and patient-reported outcomes). However, challenges...

詳細記述

書誌詳細
出版年:BMC Medical Research Methodology
主要な著者: Anya H. Fries, Eunji Choi, Summer S. Han
フォーマット: 論文
言語:英語
出版事項: BMC 2025-01-01
主題:
オンライン・アクセス:https://doi.org/10.1186/s12874-024-02418-9