Short-Term Abnormal Passenger Flow Prediction Based on the Fusion of SVR and LSTM
Passenger flow prediction is important for the operation of urban rail transit. The prediction of abnormal passenger flow is difficult due to rare similar history data. A model based on the fusion of support vector regression (SVR) and long short-term memory (LSTM) neural network is proposed. The in...
| الحاوية / القاعدة: | IEEE Access |
|---|---|
| المؤلفون الرئيسيون: | , , , , |
| التنسيق: | مقال |
| اللغة: | الإنجليزية |
| منشور في: |
IEEE
2019-01-01
|
| الموضوعات: | |
| الوصول للمادة أونلاين: | https://ieeexplore.ieee.org/document/8675737/ |
