ezLDA: Efficient and Scalable LDA on GPUs
Latent Dirichlet Allocation (LDA) is a statistical approach for topic modeling with a wide range of applications. Attracted by the exceptional computing and memory throughput capabilities, this work introduces ezLDA which achieves efficient and scalable LDA training on GPUs with the following three...
| 出版年: | IEEE Access |
|---|---|
| 主要な著者: | , , , |
| フォーマット: | 論文 |
| 言語: | 英語 |
| 出版事項: |
IEEE
2023-01-01
|
| 主題: | |
| オンライン・アクセス: | https://ieeexplore.ieee.org/document/10250424/ |
