Predicting the Spectroscopic Features of Galaxies by Applying Manifold Learning on Their Broadband Colors: Proof of Concept and Potential Applications for Euclid, Roman, and Rubin LSST

Entering the era of large-scale galaxy surveys, which will deliver unprecedented amounts of photometric and spectroscopic data, there is a growing need for more efficient, data-driven, and less model-dependent techniques to analyze the spectral energy distribution of galaxies. In this work, we demon...

詳細記述

書誌詳細
出版年:The Astrophysical Journal
主要な著者: Marziye Jafariyazani, Daniel Masters, Andreas L. Faisst, Harry I. Teplitz, Olivier Ilbert
フォーマット: 論文
言語:英語
出版事項: IOP Publishing 2024-01-01
主題:
オンライン・アクセス:https://doi.org/10.3847/1538-4357/ad38b8