Predicting the Spectroscopic Features of Galaxies by Applying Manifold Learning on Their Broadband Colors: Proof of Concept and Potential Applications for Euclid, Roman, and Rubin LSST
Entering the era of large-scale galaxy surveys, which will deliver unprecedented amounts of photometric and spectroscopic data, there is a growing need for more efficient, data-driven, and less model-dependent techniques to analyze the spectral energy distribution of galaxies. In this work, we demon...
| 出版年: | The Astrophysical Journal |
|---|---|
| 主要な著者: | , , , , |
| フォーマット: | 論文 |
| 言語: | 英語 |
| 出版事項: |
IOP Publishing
2024-01-01
|
| 主題: | |
| オンライン・アクセス: | https://doi.org/10.3847/1538-4357/ad38b8 |
