Spatio‐Temporal Hourly and Daily Ozone Forecasting in China Using a Hybrid Machine Learning Model: Autoencoder and Generative Adversarial Networks
Abstract Efficient and accurate real‐time forecasting of national spatial ozone distribution is critical to the provision of effective early warning. Traditional numerical air quality models require a high computational cost associated with running large‐scale numerical simulations. In this work, we...
| 出版年: | Journal of Advances in Modeling Earth Systems |
|---|---|
| 主要な著者: | , , , , , , |
| フォーマット: | 論文 |
| 言語: | 英語 |
| 出版事項: |
American Geophysical Union (AGU)
2022-03-01
|
| 主題: | |
| オンライン・アクセス: | https://doi.org/10.1029/2021MS002806 |
